Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 104(18): 186801, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20482195

ABSTRACT

Ballistic quantum wires are exposed to longitudinal profiles of perpendicular magnetic fields composed of a spike and a homogeneous part. An asymmetric magnetoconductance peak as a function of the homogeneous magnetic field is found, comprising quantized conductance steps in the interval where the homogeneous magnetic field and the magnetic barrier have identical polarities, and a characteristic shoulder with several resonances in the interval of opposite polarities. The observations are interpreted in terms of inhomogeneous diamagnetic shifts of the quantum wire modes leading to magnetic confinement.

2.
Phys Rev Lett ; 99(16): 166801, 2007 Oct 19.
Article in English | MEDLINE | ID: mdl-17995276

ABSTRACT

We perform self-consistent quantum transport calculations in open quantum dots taking into account the effect of electron interaction. We demonstrate that, in the regime of the ultralow temperatures 2 pi kappa BT < or = delta (delta being the mean-level spacing), the electron interaction strongly smears the conductance oscillations and thus significantly affects their statistics. Our calculations are in good quantitative agreement with the observed ultralow temperature statistics of Huibers et al. [Phys. Rev. Lett. 81, 1917 (1998)]. Our findings question a conventional interpretation of the ultralow temperature saturation of the coherence time in open dots which is based on the noninteracting theories, where the agreement with the experiment is achieved by introducing additional phenomenological channels of dephasing.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(2 Pt 2): 026217, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12241277

ABSTRACT

We present experimental studies of geometry-specific quantum scattering in microwave billiards of a given shape. We perform full quantum-mechanical scattering calculations and find excellent agreement with experimental results. We also carry out semiclassical calculations where the conductance is given as a sum over all classical trajectories between the leads, each of the trajectories carrying a quantum-mechanical phase. We unambiguously demonstrate that the characteristic frequencies of the oscillations in the transmission and reflection amplitudes t and r are related to the length distribution of the classical trajectories between the leads, whereas the frequencies of the probabilities T=/t/(2) and R=/r/(2) can be understood in terms of the length difference distribution in the pairs of classical trajectories. We also discuss the effect of nonclassical "ghost" trajectories, i.e., trajectories that include classically forbidden reflection off the lead mouths.

SELECTION OF CITATIONS
SEARCH DETAIL
...