Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(3): e0281492, 2023.
Article in English | MEDLINE | ID: mdl-36920935

ABSTRACT

BACKGROUND: Calcineurin inhibitors (CNIs) remain the cornerstone of maintenance immunosuppression (IS) after lung transplantation (LTx), although CNI-related life-threatening toxic effects may occur. Belatacept, a novel immunosuppressant that blocks a T-cell co-stimulation pathway, is a non-nephrotoxic drug indicated as an alternative to CNIs in kidney Tx. In LTx, there are only a few reports of belatacept conversion as a CNI-free or CNI-sparing IS treatment. METHODS: We reviewed a series of 10 LTx recipients with conversion to a CNI-free belatacept IS regimen within the first year post-LTx (n = 7) or a belatacept/low-dose CNI combination after the first year (n = 3). RESULTS: Use of belatacept was triggered by severe renal failure in 9 patients and under-IS with previous other IS-related toxicities in 1 patient. Mean estimated glomerular filtration rate after starting belatacept significantly improved at 6 months after initiation and at the last-follow-up (p = 0.006, and p = 0.002 respectively). The incidence of recurrent and/or severe acute cellular rejection (ACR) episodes was high in patients with CNI-free belatacept-based IS (n = 4/7). Chronic graft allograft dysfunction developed in 2 of 9 recipients under belatacept IS. Belatacept was stopped in 6 patients because of recurrent/severe ACR (n = 3), recurrent opportunistic infections (n = 1), center modified policy (n = 1), or other cause (n = 1). CONCLUSION: Early conversion to CNI-free belatacept-based IS improved renal function in this series but was counterbalanced by a high incidence of recurrent ACR, including life-threatening episodes. Other studies are needed to better determine the indications for its use after LTx, possibly with lower immunological risk IS regimens, such as CNI-sparing belatacept.


Subject(s)
Kidney Transplantation , Lung Transplantation , Humans , Abatacept/therapeutic use , Abatacept/pharmacology , Calcineurin Inhibitors/adverse effects , Graft Rejection/drug therapy , Graft Rejection/prevention & control , Graft Survival , Immunosuppressive Agents/adverse effects , Kidney Transplantation/adverse effects , Lung Transplantation/adverse effects
2.
Emerg Infect Dis ; 29(3): 642-644, 2023 03.
Article in English | MEDLINE | ID: mdl-36823767

ABSTRACT

Inquilinus limosus is an environmental bacterium associated with respiratory tract colonization in cystic fibrosis patients. We report a case of I. limosus bacteremia in a patient in France who received a lung transplant and experienced chronic graft dysfunction and SARS-CoV-2 infection. This case suggests I. limosus displays virulence factors associated with invasion.


Subject(s)
Bacteremia , COVID-19 , Humans , Transplant Recipients , SARS-CoV-2 , Lung
3.
Front Pharmacol ; 13: 896167, 2022.
Article in English | MEDLINE | ID: mdl-36059986

ABSTRACT

Background: The Janus kinase (JAK) 1/2 inhibitor ruxolitinib has been approved in an indication of myelofibrosis and is a candidate for the treatment of a number of inflammatory or autoimmune diseases. We assessed the effects of ruxolitinib on lipopolysaccharide (LPS)- and poly (I:C)-induced cytokine production by human lung macrophages (LMs) and on the LMs' phagocytic activity. Methods: Human LMs were isolated from patients operated on for lung carcinoma. The LMs were cultured with ruxolitinib (0.5 × 10-7 M to 10-5 M) or budesonide (10-11 to 10-8 M) and then stimulated with LPS (10 ng·ml-1) or poly (I:C) (10 µg·ml-1) for 24 h. Cytokines released by the LMs into the supernatants were measured using ELISAs. The phagocytosis of labelled bioparticles was assessed using flow cytometry. Results: Ruxolitinib inhibited both the LPS- and poly (I:C)-stimulated production of tumor necrosis factor alpha, interleukin (IL)-6, IL-10, chemokines CCL2, and CXCL10 in a concentration-dependent manner. Ruxolitinib also inhibited the poly (I:C)- induced (but not the LPS-induced) production of IL-1ß. Budesonide inhibited cytokine production more strongly than ruxolitinib but failed to mitigate the production of CXCL10. The LMs' phagocytic activity was not impaired by the highest tested concentration (10-5 M) of ruxolitinib. Conclusion: Clinically relevant concentrations of ruxolitinib inhibited the LPS- and poly (I:C)-stimulated production of cytokines by human LMs but did not impair their phagocytic activity. Overall, ruxolitinib's anti-inflammatory activities are less intense than (but somewhat different from) those of budesonide-particularly with regard to the production of the corticosteroid-resistant chemokine CXCL-10. Our results indicate that treatment with a JAK inhibitor might be a valuable anti-inflammatory strategy in chronic obstructive pulmonary disease, Th1-high asthma, and both viral and non-viral acute respiratory distress syndromes (including coronavirus disease 2019).

SELECTION OF CITATIONS
SEARCH DETAIL
...