Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Orphanet J Rare Dis ; 19(1): 197, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741100

ABSTRACT

BACKGROUND: Rare diseases are often complex, chronic and many of them life-shortening. In Germany, healthcare for rare diseases is organized in expert centers for rare diseases. Most patients additionally have regional general practicioners and specialists for basic medical care. Thus, collaboration and information exchange between sectors is highly relevant. Our study focuses on the patient and caregiver perspective on intersectoral and interdisciplinary care between local healthcare professionals (HCPs) and centers for rare diseases in Germany. The aims were (1) to investigate patients' and caregivers' general experience of healthcare, (2) to analyse patients' and caregivers' perception of collaboration and cooperation between local healthcare professionals and expert centers for rare diseases and (3) to investigate patients' and caregivers' satisfaction with healthcare in the expert centers for rare diseases. RESULTS: In total 299 individuals of whom 176 were patients and 123 were caregivers to pediatric patients participated in a survey using a questionnaire comprising several instruments and constructs. Fifty participants were additionally interviewed using a semistructured guideline. Most patients reported to receive written information about their care, have a contact person for medical issues and experienced interdisciplinary exchange within the centers for rare diseases. Patients and caregivers in our sample were mainly satisfied with the healthcare in the centers for rare diseases. The qualitative interviews showed a rather mixed picture including experiences of uncoordinated care, low engagement and communication difficulties between professionals of different sectors. Patients reported several factors that influenced the organization and quality of healthcare e.g. engagement and health literacy in patients or engagement of HCPs. CONCLUSIONS: Our findings indicate the high relevance of transferring affected patients to specialized care as fast as possible to provide best medical treatment and increase patient satisfaction. Intersectoral collaboration should exceed written information exchange and should unburden patients of being and feeling responsible for communication between sectors and specialists. Results indicate a lack of inclusion of psychosocial aspects in routine care, which suggests opportunities for necessary improvements.


Subject(s)
Rare Diseases , Humans , Rare Diseases/therapy , Germany , Male , Female , Surveys and Questionnaires , Adult , Middle Aged , Intersectoral Collaboration , Health Personnel/psychology , Delivery of Health Care , Communication , Patient Satisfaction , Young Adult , Caregivers/psychology
2.
Orphanet J Rare Dis ; 19(1): 147, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582900

ABSTRACT

BACKGROUND: Patient registries and databases are essential tools for advancing clinical research in the area of rare diseases, as well as for enhancing patient care and healthcare planning. The primary aim of this study is a landscape analysis of available European data sources amenable to machine learning (ML) and their usability for Rare Diseases screening, in terms of findable, accessible, interoperable, reusable(FAIR), legal, and business considerations. Second, recommendations will be proposed to provide a better understanding of the health data ecosystem. METHODS: In the period of March 2022 to December 2022, a cross-sectional study using a semi-structured questionnaire was conducted among potential respondents, identified as main contact person of a health-related databases. The design of the self-completed questionnaire survey instrument was based on information drawn from relevant scientific publications, quantitative and qualitative research, and scoping review on challenges in mapping European rare disease (RD) databases. To determine database characteristics associated with the adherence to the FAIR principles, legal and business aspects of database management Bayesian models were fitted. RESULTS: In total, 330 unique replies were processed and analyzed, reflecting the same number of distinct databases (no duplicates included). In terms of geographical scope, we observed 24.2% (n = 80) national, 10.0% (n = 33) regional, 8.8% (n = 29) European, and 5.5% (n = 18) international registries coordinated in Europe. Over 80.0% (n = 269) of the databases were still active, with approximately 60.0% (n = 191) established after the year 2000 and 71.0% last collected new data in 2022. Regarding their geographical scope, European registries were associated with the highest overall FAIR adherence, while registries with regional and "other" geographical scope were ranked at the bottom of the list with the lowest proportion. Responders' willingness to share data as a contribution to the goals of the Screen4Care project was evaluated at the end of the survey. This question was completed by 108 respondents; however, only 18 of them (16.7%) expressed a direct willingness to contribute to the project by sharing their databases. Among them, an equal split between pro-bono and paid services was observed. CONCLUSIONS: The most important results of our study demonstrate not enough sufficient FAIR principles adherence and low willingness of the EU health databases to share patient information, combined with some legislation incapacities, resulting in barriers to the secondary use of data.


Subject(s)
Rare Diseases , Humans , Bayes Theorem , Cross-Sectional Studies , Machine Learning , Rare Diseases/diagnosis
3.
PLoS One ; 18(11): e0293503, 2023.
Article in English | MEDLINE | ID: mdl-37992053

ABSTRACT

Since 72% of rare diseases are genetic in origin and mostly paediatrics, genetic newborn screening represents a diagnostic "window of opportunity". Therefore, many gNBS initiatives started in different European countries. Screen4Care is a research project, which resulted of a joint effort between the European Union Commission and the European Federation of Pharmaceutical Industries and Associations. It focuses on genetic newborn screening and artificial intelligence-based tools which will be applied to a large European population of about 25.000 infants. The neonatal screening strategy will be based on targeted sequencing, while whole genome sequencing will be offered to all enrolled infants who may show early symptoms but have resulted negative at the targeted sequencing-based newborn screening. We will leverage artificial intelligence-based algorithms to identify patients using Electronic Health Records (EHR) and to build a repository "symptom checkers" for patients and healthcare providers. S4C will design an equitable, ethical, and sustainable framework for genetic newborn screening and new digital tools, corroborated by a large workout where legal, ethical, and social complexities will be addressed with the intent of making the framework highly and flexibly translatable into the diverse European health systems.


Subject(s)
Neonatal Screening , Rare Diseases , Infant, Newborn , Humans , Child , Neonatal Screening/methods , Rare Diseases/diagnosis , Rare Diseases/epidemiology , Rare Diseases/genetics , Artificial Intelligence , Digital Technology , Europe
4.
BMC Neurol ; 23(1): 366, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817097

ABSTRACT

BACKGROUND: Myasthenia gravis (MG) affects individuals as a chronic autoimmune disease for many years. Commonly, chronic diseases significantly reduce the patients' quality of life. Aiming to improve the future quality of life in MG, this study assessed the factors impacting quality of life. As gender-specific medicine is becoming increasingly important, this study also focused on understanding gender differences in the outcome of MG. METHODS: The study is a combined monocentric, retrospective and prospective database analysis of patient records based on 2,370 presentations of 165 patients with clinically, serologically and/or electrophysiologically confirmed MG over an observation period of up to 47 years. The data collection included the following parameters: antibody status, disease severity, age, medication use, gender, and disease duration. In addition, a prospective survey was conducted on the quality of life using the Myasthenia gravis-specific 15-item Quality of Life scale (MG-QoL15) and on the activities of daily living using the MG-specific Activities of Daily Living scale (MG-ADL). RESULTS: Of the 165 patients, 85 were male (51.5%) and 80 were female (48.5%). The remaining baseline characteristics (e.g. age and antibody status) were consistent with other myasthenia gravis cohorts. A high body mass index (BMI) (p = 0.005) and a high disease severity (p < 0.001) were significantly associated with lower disease-specific quality of life. Additionally, the quality of life in women with MG was significantly reduced compared to male patients (19.7 vs. 13.0 points in the MG-QoL15, p = 0.024). Gender differences were also observable in terms of the period between initial manifestation and initial diagnosis and women were significantly more impaired in their activities of daily living (MG-ADL) than men (4.8 vs. 3.0 points, p = 0.032). CONCLUSION: Women with MG had significantly poorer disease specific quality of life compared to men as well as patients with a higher BMI. In order to improve the quality of life, gender-specific medicine and further investigation regarding a modification of the quality of life by lowering the BMI are essential and necessary. TRIAL REGISTRATION: Study approval by the Ethics Committee of the University Medical Center Göttingen was granted (number 6/5/18).


Subject(s)
Myasthenia Gravis , Quality of Life , Humans , Male , Female , Activities of Daily Living , Cohort Studies , Overweight/complications , Retrospective Studies , Myasthenia Gravis/complications , Surveys and Questionnaires
5.
Acta Neuropathol ; 146(5): 725-745, 2023 11.
Article in English | MEDLINE | ID: mdl-37773216

ABSTRACT

Inclusion body myositis (IBM) is unique across the spectrum of idiopathic inflammatory myopathies (IIM) due to its distinct clinical presentation and refractoriness to current treatment approaches. One explanation for this resistance may be the engagement of cell-autonomous mechanisms that sustain or promote disease progression of IBM independent of inflammatory activity. In this study, we focused on senescence of tissue-resident cells as potential driver of disease. For this purpose, we compared IBM patients to non-diseased controls and immune-mediated necrotizing myopathy patients. Histopathological analysis suggested that cellular senescence is a prominent feature of IBM, primarily affecting non-myogenic cells. In-depth analysis by single nuclei RNA sequencing allowed for the deconvolution and study of muscle-resident cell populations. Among these, we identified a specific cluster of fibro-adipogenic progenitors (FAPs) that demonstrated key hallmarks of senescence, including a pro-inflammatory secretome, expression of p21, increased ß-galactosidase activity, and engagement of senescence pathways. FAP function is required for muscle cell health with changes to their phenotype potentially proving detrimental. In this respect, the transcriptomic landscape of IBM was also characterized by changes to the myogenic compartment demonstrating a pronounced loss of type 2A myofibers and a rarefication of acetylcholine receptor expressing myofibers. IBM muscle cells also engaged a specific pro-inflammatory phenotype defined by intracellular complement activity and the expression of immunogenic surface molecules. Skeletal muscle cell dysfunction may be linked to FAP senescence by a change in the collagen composition of the latter. Senescent FAPs lose collagen type XV expression, which is required to support myofibers' structural integrity and neuromuscular junction formation in vitro. Taken together, this study demonstrates an altered phenotypical landscape of muscle-resident cells and that FAPs, and not myofibers, are the primary senescent cell type in IBM.


Subject(s)
Myositis, Inclusion Body , Myositis , Humans , Myositis, Inclusion Body/metabolism , Adipogenesis , Collagen/metabolism , Muscle, Skeletal/metabolism
6.
Biomedicines ; 11(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37509455

ABSTRACT

Temporal interference stimulation (TIS) aims at targeting deep brain areas during transcranial electrical alternating current stimulation (tACS) by generating interference fields at depth. Although its modulatory effects have been demonstrated in animal and human models and stimulation studies, direct experimental evidence is lacking for its utility in humans (in vivo). Herein, we directly test and compare three different structures: firstly, we perform peripheral nerve and muscle stimulation quantifying muscle twitches as readout, secondly, we stimulate peri-orbitally with phosphene perception as a surrogate marker, and thirdly, we attempt to modulate the mean power of alpha oscillations in the occipital area as measured with electroencephalography (EEG). We found strong evidence for stimulation efficacy on the modulated frequency in the PNS, but we found no evidence for its utility in the CNS. Possible reasons for failing to activate CNS targets could be comparatively higher activation thresholds here or inhibitory stimulation components to the carrier frequency interfering with the effects of the modulated signal.

7.
J Cachexia Sarcopenia Muscle ; 13(6): 3106-3121, 2022 12.
Article in English | MEDLINE | ID: mdl-36254806

ABSTRACT

BACKGROUND: Human pluripotent stem cell-derived muscle models show great potential for translational research. Here, we describe developmentally inspired methods for the derivation of skeletal muscle cells and their utility in skeletal muscle tissue engineering with the aim to model skeletal muscle regeneration and dystrophy in vitro. METHODS: Key steps include the directed differentiation of human pluripotent stem cells to embryonic muscle progenitors followed by primary and secondary foetal myogenesis into three-dimensional muscle. To simulate Duchenne muscular dystrophy (DMD), a patient-specific induced pluripotent stem cell line was compared to a CRISPR/Cas9-edited isogenic control line. RESULTS: The established skeletal muscle differentiation protocol robustly and faithfully recapitulates critical steps of embryonic myogenesis in two-dimensional and three-dimensional cultures, resulting in functional human skeletal muscle organoids (SMOs) and engineered skeletal muscles (ESMs) with a regeneration-competent satellite-like cell pool. Tissue-engineered muscle exhibits organotypic maturation and function (up to 5.7 ± 0.5 mN tetanic twitch tension at 100 Hz in ESM). Contractile performance could be further enhanced by timed thyroid hormone treatment, increasing the speed of contraction (time to peak contraction) as well as relaxation (time to 50% relaxation) of single twitches from 107 ± 2 to 75 ± 4 ms (P < 0.05) and from 146 ± 6 to 100 ± 6 ms (P < 0.05), respectively. Satellite-like cells could be documented as largely quiescent PAX7+ cells (75 ± 6% Ki67- ) located adjacent to muscle fibres confined under a laminin-containing basal membrane. Activation of the engineered satellite-like cell niche was documented in a cardiotoxin injury model with marked recovery of contractility to 57 ± 8% of the pre-injury force 21 days post-injury (P < 0.05 compared to Day 2 post-injury), which was completely blocked by preceding irradiation. Absence of dystrophin in DMD ESM caused a marked reduction of contractile force (-35 ± 7%, P < 0.05) and impaired expression of fast myosin isoforms resulting in prolonged contraction (175 ± 14 ms, P < 0.05 vs. gene-edited control) and relaxation (238 ± 22 ms, P < 0.05 vs. gene-edited control) times. Restoration of dystrophin levels by gene editing rescued the DMD phenotype in ESM. CONCLUSIONS: We introduce human muscle models with canonical properties of bona fide skeletal muscle in vivo to study muscle development, maturation, disease and repair.


Subject(s)
Muscular Dystrophy, Duchenne , Satellite Cells, Skeletal Muscle , Humans , Muscular Dystrophy, Duchenne/genetics , Muscle, Skeletal/metabolism , Muscle Development/genetics , Satellite Cells, Skeletal Muscle/metabolism , Muscle Fibers, Skeletal/metabolism
8.
Int J Mol Sci ; 23(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36076964

ABSTRACT

Duchenne Muscular Dystrophy (DMD) is a debilitating muscle disorder that condemns patients to year-long dependency on glucocorticoids. Chronic glucocorticoid use elicits many unfavourable side-effects without offering satisfying clinical improvement, thus, the search for alternative treatments to alleviate muscle inflammation persists. Taurine, an osmolyte with anti-inflammatory effects, mitigated pathological features in the mdx mouse model for DMD but interfered with murine development. In this study, ectoine is evaluated as an alternative for taurine in vitro in CCL-136 cells and in vivo in the mdx mouse. Pre-treating CCL-136 cells with 0.1 mM taurine and 0.1 mM ectoine prior to exposure with 300 U/mL IFN-γ and 20 ng/mL IL-1ß partially attenuated cell death, whilst 100 mM taurine reduced MHC-I protein levels. In vivo, histopathological features of the tibialis anterior in mdx mice were mitigated by ectoine, but not by taurine. Osmolyte treatment significantly reduced mRNA levels of inflammatory disease biomarkers, respectively, CCL2 and SPP1 in ectoine-treated mdx mice, and CCL2, HSPA1A, TNF-α and IL-1ß in taurine-treated mdx mice. Functional performance was not improved by osmolyte treatment. Furthermore, ectoine-treated mdx mice exhibited reduced body weight. Our results confirmed beneficial effects of taurine in mdx mice and, for the first time, demonstrated similar and differential effects of ectoine.


Subject(s)
Muscular Dystrophy, Duchenne , Amino Acids, Diamino , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Taurine/metabolism , Taurine/pharmacology , Taurine/therapeutic use
9.
Nervenarzt ; 93(12): 1219-1227, 2022 Dec.
Article in German | MEDLINE | ID: mdl-35997783

ABSTRACT

Successful vaccination (adequate elevation of anti-spike protein antibodies) is attributed with sufficient protection against a severe course of coronavirus disease 2019 (COVID-19). For patients with chronic inflammatory diseases (CID) and immunosuppression the success of vaccination is an ongoing scientific discourse. Therefore, we evaluated the antibody titer against the S1 antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 2 weeks after complete immunization in patients with an underlying neuromuscular disease (NMD), who presented to our neurological day clinic and outpatient department for regular infusions of immunoglobulins. The data show that patients with chronic autoimmune NMD and simultaneous immunosuppressive or immune modulating treatment show an antibody response after vaccination with both mRNA and vector vaccines. In comparison to healthy subjects there is a comparable number of seroconversions due to the vaccination. A correlation between immunoglobulin dose and vaccination response could not be found; however, in contrast, there was a significant reduction of specific antibody synthesis, especially for the combination of mycophenolate mofetil (MMF) and prednisolone.


Subject(s)
COVID-19 , Neuromuscular Diseases , Humans , SARS-CoV-2 , COVID-19 Vaccines , Antibody Formation , COVID-19/prevention & control , Antibodies, Viral , Vaccination , Neuromuscular Diseases/drug therapy , Disease Progression
10.
Sci Rep ; 12(1): 13299, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918439

ABSTRACT

Retrospective gating (RG) is a well established technique in preclinical computed tomography (CT) to assess 3D morphology of the lung. In RG additional angular projections are recorded typically by performing multiple rotations. Consequently, the projections are sorted according to the expansion state of the chest and those sets are then reconstructed separately. Thus, the breathing motion artefacts are suppressed at a cost of strongly elevated X-ray dose levels. Here we propose to use the entire raw data to assess respiratory motion in addition to retrospectively gated 3D reconstruction that visualize anatomical structures of the lung. Using this RG based X-ray respiratory motion measurement approach, which will be referred to as RG based X-ray lung function measurement (rgXLF) on the example of the mdx mouse model of Duchenne muscle dystrophy (mdx) we accurately obtained both the 3D anatomical morphology of the lung and the thoracic bones as well as functional temporal parameters of the lung. Thus, rgXLF will remove the necessity for separate acquisition procedures by being able to reproduce comparable results to the previously established planar X-ray based lung function measurement approach in a single low dose CT scan.


Subject(s)
Lung , Respiration , Animals , Lung/diagnostic imaging , Mice , Mice, Inbred mdx , Retrospective Studies , X-Ray Microtomography
11.
Front Neurol ; 13: 893605, 2022.
Article in English | MEDLINE | ID: mdl-35928135

ABSTRACT

Background: Benefits and challenges resulting from advances in genetic diagnostics are two sides of the same coin. Facilitation of a correct and timely diagnosis is paralleled by challenges in interpretation of variants of unknown significance (VUS). Focusing on an individual VUS-re-classification pipeline, this study offers a diagnostic approach for clinically suspected hereditary muscular dystrophy by combining the expertise of an interdisciplinary team. Methods: In a multi-step approach, a thorough phenotype assessment including clinical examination, laboratory work, muscle MRI and histopathological evaluation of muscle was performed in combination with advanced Next Generation Sequencing (NGS). Different in-silico tools and prediction programs like Alamut, SIFT, Polyphen, MutationTaster and M-Cap as well as 3D- modeling of protein structure and RNA-sequencing were employed to determine clinical significance of the LAMA2 variants. Results: Two previously unknown sequence alterations in LAMA2 were detected, a missense variant was classified initially according to ACMG guidelines as a VUS (class 3) whereas a second splice site variant was deemed as likely pathogenic (class 4). Pathogenicity of the splice site variant was confirmed by mRNA sequencing and nonsense mediated decay (NMD) was detected. Combination of the detected variants could be associated to the LGMDR23-phenotype based on the MRI matching and literature research. Discussion: Two novel variants in LAMA2 associated with LGMDR23-phenotype are described. This study illustrates challenges of the genetic findings due to their VUS classification and elucidates how individualized diagnostic procedure has contributed to the accurate diagnosis in the spectrum of LGMD.

12.
Cells ; 11(7)2022 04 05.
Article in English | MEDLINE | ID: mdl-35406795

ABSTRACT

Many neuromuscular disease entities possess a significant disease burden and therapeutic options remain limited. Innovative human preclinical models may help to uncover relevant disease mechanisms and enhance the translation of therapeutic findings to strengthen neuromuscular disease precision medicine. By concentrating on idiopathic inflammatory muscle disorders, we summarize the recent evolution of the novel in vitro models to study disease mechanisms and therapeutic strategies. A particular focus is laid on the integration and simulation of multicellular interactions of muscle tissue in disease phenotypes in vitro. Finally, the requirements of a neuromuscular disease drug development workflow are discussed with a particular emphasis on cell sources, co-culture systems (including organoids), functionality, and throughput.


Subject(s)
Neuromuscular Diseases , Organoids , Coculture Techniques , Drug Development , Humans , Muscle Cells , Neuromuscular Diseases/drug therapy
13.
Int J Mol Sci ; 23(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35328671

ABSTRACT

Duchenne muscular dystrophy (DMD) is a genetic disorder characterized by progressive muscle degeneration. Osmotic stress participates to DMD pathology and altered levels of osmolyte pathway members have been reported. The goal of this study was to gain insight in osmoregulatory changes in the mdx mouse model by examining the expression of osmolyte pathway members, including taurine transporter (TauT), sodium myo-inositol co-transporter (SMIT), betaine GABA transporter (BGT), and aldose reductase (AR) in the skeletal muscles and diaphragm of mdx mice aged 4, 8, 12, and 26 weeks. Necrosis was most prominent in 12 week-old mdx mice, whereas the amount of regenerated fibers increased until week 26 in the tibialis anterior. TauT protein levels were downregulated in the tibialis anterior and gastrocnemius of 4 to 12 week-old mdx mice, but not in 26 week-old mice, whereas TauT levels in the diaphragm remained significantly lower in 26 week-old mdx mice. In contrast, SMIT protein levels were significantly higher in the muscles of mdx mice when compared to controls. Our study revealed differential regulation of osmolyte pathway members in mdx muscle, which points to their complex involvement in DMD pathogenesis going beyond general osmotic stress responses. These results highlight the potential of osmolyte pathway members as a research interest and future therapeutic target in dystrophinopathy.


Subject(s)
Muscular Dystrophy, Duchenne , Symporters , Animals , Inositol/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Sodium/metabolism , Symporters/metabolism , Taurine/metabolism
14.
Cells ; 11(5)2022 03 07.
Article in English | MEDLINE | ID: mdl-35269540

ABSTRACT

Duchenne muscular dystrophy (DMD) is the most common x-chromosomal inherited dystrophinopathy which leads to progressive muscle weakness and a premature death due to cardiorespiratory dysfunction. The mdx mouse lacks functional dystrophin protein and has a comparatively human-like diaphragm phenotype. To date, diaphragm function can only be inadequately mapped in preclinical studies and a simple reliable translatable method of tracking the severity of the disease still lacks. We aimed to establish a sensitive, reliable, harmless and easy way to assess the effects of respiratory muscle weakness and subsequent irregularity in breathing pattern. Optical respiratory dynamics tracking (ORDT) was developed utilising a camera to track the movement of paper markers placed on the thoracic-abdominal region of the mouse. ORDT successfully distinguished diseased mdx phenotype from healthy controls by measuring significantly higher expiration constants (k) in mdx mice compared to wildtype (wt), which were also observed in the established X-ray based lung function (XLF). In contrast to XLF, with ORDT we were able to distinguish distinct fast and slow expiratory phases. In mdx mice, a larger part of the expiratory marker displacement was achieved in this initial fast phase as compared to wt mice. This phenomenon could not be observed in the XLF measurements. We further validated the simplicity and reliability of our approach by demonstrating that it can be performed using free-hand smartphone acquisition. We conclude that ORDT has a great preclinical potential to monitor DMD and other neuromuscular diseases based on changes in the breathing patterns with the future possibility to track therapy response.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Animals , Diaphragm , Dystrophin/genetics , Mice , Mice, Inbred mdx , Muscle Weakness , Muscular Dystrophy, Duchenne/genetics , Reproducibility of Results
15.
Cells ; 11(4)2022 02 09.
Article in English | MEDLINE | ID: mdl-35203250

ABSTRACT

Inclusion body myositis (IBM) is a slowly progressive muscle weakness of distal and proximal muscles, which is diagnosed by clinical and histopathological criteria. Imaging biomarkers are inconsistently used and do not follow international standardized criteria. We conducted a systematic review and meta-analysis to investigate the diagnostic value of muscle ultrasound (US) in IBM compared to healthy controls. A systematic search of PubMed/MEDLINE, Scopus and Web of Science was performed. Articles reporting the use of muscle ultrasound in IBM, and published in peer-reviewed journals until 11 September 2021, were included in our study. Seven studies were included, with a total of 108 IBM and 171 healthy controls. Echogenicity between IBM and healthy controls, which was assessed by three studies, demonstrated a significant mean difference in the flexor digitorum profundus (FDP) muscle, which had a grey scale value (GSV) of 36.55 (95% CI, 28.65-44.45, p < 0.001), and in the gastrocnemius (GC), which had a GSV of 27.90 (95% CI 16.32-39.48, p < 0.001). Muscle thickness in the FDP showed no significant difference between the groups. The pooled sensitivity and specificity of US in the differentiation between IBM and the controls were 82% and 98%, respectively, and the area under the curve was 0.612. IBM is a rare disease, which is reflected in the low numbers of patients included in each of the studies and thus there was high heterogeneity in the results. Nevertheless, the selected studies conclusively demonstrated significant differences in echogenicity of the FDP and GC in IBM, compared to controls. Further high-quality studies, using standardized operating procedures, are needed to implement muscle ultrasound in the diagnostic criteria.


Subject(s)
Myositis, Inclusion Body , Forearm/diagnostic imaging , Forearm/pathology , Humans , Muscle Weakness , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Myositis, Inclusion Body/diagnostic imaging , Ultrasonography/methods
16.
J Neurosci Res ; 98(10): 1933-1952, 2020 10.
Article in English | MEDLINE | ID: mdl-32588471

ABSTRACT

Charcot-Marie-Tooth disease 1 A (CMT1A) is caused by an intrachromosomal duplication of the gene encoding for PMP22 leading to peripheral nerve dysmyelination, axonal loss, and progressive muscle weakness. No therapy is available. PXT3003 is a low-dose combination of baclofen, naltrexone, and sorbitol which has been shown to improve disease symptoms in Pmp22 transgenic rats, a bona fide model of CMT1A disease. However, the superiority of PXT3003 over its single components or dual combinations have not been tested. Here, we show that in a dorsal root ganglion (DRG) co-culture system derived from transgenic rats, PXT3003 induced myelination when compared to its single and dual components. Applying a clinically relevant ("translational") study design in adult male CMT1A rats for 3 months, PXT3003, but not its dual components, resulted in improved performance in behavioral motor and sensory endpoints when compared to placebo. Unexpectedly, we observed only a marginally increased number of myelinated axons in nerves from PXT3003-treated CMT1A rats. However, in electrophysiology, motor latencies correlated with increased grip strength indicating a possible effect of PXT3003 on neuromuscular junctions (NMJs) and muscle fiber pathology. Indeed, PXT3003-treated CMT1A rats displayed an increased perimeter of individual NMJs and a larger number of functional NMJs. Moreover, muscles of PXT3003 CMT1A rats displayed less neurogenic atrophy and a shift toward fast contracting muscle fibers. We suggest that ameliorated motor function in PXT3003-treated CMT1A rats result from restored NMJ function and muscle innervation, independent from myelination.


Subject(s)
Baclofen/administration & dosage , Charcot-Marie-Tooth Disease/drug therapy , Demyelinating Diseases/drug therapy , Naltrexone/administration & dosage , Neuromuscular Junction/drug effects , Sorbitol/administration & dosage , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Coculture Techniques , Demyelinating Diseases/genetics , Demyelinating Diseases/physiopathology , Drug Synergism , Drug Therapy, Combination , Female , Male , Myelin Proteins/genetics , Neural Conduction/drug effects , Neural Conduction/physiology , Neuromuscular Junction/physiology , Rats , Rats, Sprague-Dawley , Rats, Transgenic
17.
J Cachexia Sarcopenia Muscle ; 11(4): 1018-1031, 2020 08.
Article in English | MEDLINE | ID: mdl-32436338

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by mutations in the dystrophin gene, which leads to structural instability of the dystrophin-glycoprotein-complex with subsequent muscle degeneration. In addition, muscle inflammation has been implicated in disease progression and therapeutically addressed with glucocorticosteroids. These have numerous adverse effects. Treatment with human immunoglobulin G (IgG) improved clinical and para-clinical parameters in the early disease phase in the well-established mdx mouse model. The aim of the present study was to confirm the efficacy of IgG in a long-term pre-clinical study in mdx mice. METHODS: IgG (2 g/kg body weight) or NaCl solution as control was administered monthly over 18 months by intraperitoneal injection in mdx mice beginning at 3 weeks of age. Several clinical outcome measures including endurance, muscle strength, and echocardiography were assessed. After 18 months, the animals were sacrificed, blood was collected for analysis, and muscle samples were obtained for ex vivo muscle contraction tests, quantitative PCR, and histology. RESULTS: IgG significantly improved the daily voluntary running performance (1.9 m more total daily running distance, P < 0.0001) and slowed the decrease in grip strength by 0.1 mN, (P = 0.018). IgG reduced fatigability of the diaphragm (improved ratio to maximum force by 0.09 ± 0.04, P = 0.044), but specific tetanic force remained unchanged in the ex vivo muscle contraction test. Cardiac function was significantly better after IgG, especially fractional area shortening (P = 0.012). These results were accompanied by a reduction in cardiac fibrosis and the infiltration of T cells (P = 0.0002) and macrophages (P = 0.0027). In addition, treatment with IgG resulted in a significant reduction of the infiltration of T cells (P ≤ 0.036) in the diaphragm, gastrocnemius, quadriceps, and a similar trend in tibialis anterior and macrophages (P ≤ 0.045) in gastrocnemius, quadriceps, tibialis anterior, and a similar trend in the diaphragm, as well as a decrease in myopathic changes as reflected by a reduced central nuclear index in the diaphragm, tibialis anterior, and quadriceps (P ≤ 0.002 in all). CONCLUSIONS: The present study underscores the importance of an inflammatory contribution to the disease progression of DMD. The data demonstrate the long-term efficacy of IgG in the mdx mouse. IgG is well tolerated by humans and could preferentially complement gene therapy in DMD. The data call for a clinical trial with IgG in DMD.


Subject(s)
Heart/physiopathology , Immunoglobulin G/therapeutic use , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/complications , Animals , Disease Models, Animal , Humans , Immunoglobulin G/pharmacology , Mice
18.
Best Pract Res Clin Rheumatol ; 33(3): 101433, 2019 06.
Article in English | MEDLINE | ID: mdl-31590993

ABSTRACT

Myalgia is a common symptom of various neuromuscular disorders: myalgia occurs in metabolic muscle diseases, inflammatory muscle diseases, dystrophic myopathies and myotonic muscle disorders. Myalgia leads to a significantly reduced quality of life. Other muscular symptoms that are present along with myalgia often provide the clue towards a diagnosis and include weakness, cramps and myotonia as well as the type of pain. In addition, extramuscular symptoms like an erythema in dermatomyositis can lead to the correct diagnosis. Basic diagnostic workup includes a detailed medical history, full neurologic assessment, laboratory tests, EMG and nerve conduction studies. Muscle imaging, genetic testing and muscle biopsy may be required to make a diagnosis. Whenever possible, treatment should aim to improve or correct the underlying cause for myalgia such as inflammation or hypothyroidism. Symptomatic therapy includes different avenues: Myotonia can be treated with mexiletine. Carbamazepine or phenytoin can be used in myotonic syndromes, particularly with muscle cramps. Pregabalin, gabapentin, or amitriptyline can be tried in conditions with myalgic pain. This review summarizes the symptoms, diagnostic strategies, and therapeutic approach in neuromuscular disorders that present with myalgia.


Subject(s)
Muscular Diseases/complications , Muscular Diseases/diagnosis , Myalgia/etiology , Myositis/complications , Myositis/diagnosis , Humans , Quality of Life
19.
Front Neurol ; 9: 846, 2018.
Article in English | MEDLINE | ID: mdl-30364257

ABSTRACT

We recently identified osmolyte accumulators as novel biomarkers for chronic skeletal muscle inflammation and weakness, but their precise involvement in inflammatory myopathies remains elusive. In the current study, we demonstrate in vitro that, in myoblasts and myotubes exposed to pro-inflammatory cytokines or increased salt concentration, mRNA levels of the osmolyte carriers SLC5A3, SLC6A6, SLC6A12, and AKR1B1 enzyme can be upregulated. Induction of SLC6A12 and AKR1B1 was confirmed at the protein level using immunofluorescence and Western blotting. Gene silencing by specific siRNAs revealed that these factors were vital for muscle cells under hyperosmotic conditions. Pro-inflammatory cytokines activated mitogen-activated protein kinases, nuclear factor κB as well as nuclear factor of activated T-cells 5 mRNA expression. In muscle biopsies from patients with polymyositis or sporadic inclusion body myositis, osmolyte pathway activation was observed in regenerating muscle fibers. In addition, the osmolyte carriers SLC5A3 and SLC6A12 localized to subsets of immune cells, most notably to the endomysial macrophages and T-cells. Collectively, this study unveiled that muscle cells respond to osmotic and inflammatory stress by osmolyte pathway activation, likely orchestrating general protection of the tissue. Moreover, pro-inflammatory properties are attributed to SLC5A3 and SLC6A12 in auto-aggressive macrophages and T-cells in inflamed skeletal muscle.

SELECTION OF CITATIONS
SEARCH DETAIL
...