Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 18318, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36351930

ABSTRACT

The benefits of continuous glucose monitoring (CGM) in diabetes management are extensively documented. Yet, the broader adoption of CGM systems is limited by their cost and invasiveness. Current CGM devices, requiring implantation or the use of hypodermic needles, fail to offer a convenient solution. We have demonstrated that magnetohydrodynamics (MHD) is effective at extracting dermal interstitial fluid (ISF) containing glucose, without the use of needles. Here we present the first study of ISF sampling with MHD for glucose monitoring in humans. We conducted 10 glucose tolerance tests on 5 healthy volunteers and obtained a significant correlation between the concentration of glucose in ISF samples extracted with MHD and capillary blood glucose samples. Upon calibration and time lag removal, the data indicate a Mean Absolute Relative Difference (MARD) of 12.9% and Precision Absolute Relative Difference of 13.1%. In view of these results, we discuss the potential value and limitations of MHD in needle-free glucose monitoring.


Subject(s)
Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1 , Humans , Blood Glucose Self-Monitoring/methods , Blood Glucose , Pilot Projects , Healthy Volunteers , Glucose
2.
Biosens Bioelectron ; 206: 114123, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35259608

ABSTRACT

We integrated a magnetohydrodynamic fluid extractor with an amperometric glucose biosensor to develop a wearable device for non-invasive glucose monitoring. Reproducible fluid extraction through the skin and efficient transport of the extracted fluid to the biosensor surface are prerequisites for non-invasive glucose monitoring. We optimized the enzyme immobilization and the interface layer between the sensing device and the skin. The monitoring device was evaluated by extracting fluid through porcine skin followed by glucose detection at the biosensor. The biosensor featured a screen-printed layer of Prussian Blue that was coated with a layer containing glucose oxidase. Both physical entrapment of glucose oxidase in chitosan and tethering of glucose oxidase to electrospun nanofibers were evaluated. Binding of glucose oxidase to nanofibers under mild conditions provided a stable biosensor with analytical performance suitable for accurate detection of micromolar concentrations of glucose. Hydrogels of varying thickness (95-2000 µm) as well as a thin (30 µm) nanofibrous polycaprolactone mat were studied as an interface layer between the biosensor and the skin. The effect of mass transfer phenomena at the biosensor-skin interface on the analytical performance of the biosensor was evaluated. The sensing device detected glucose extracted through porcine skin with an apparent (overall) sensitivity of -0.8 mA/(M·cm2), compared to a sensitivity of -17 mA/(M·cm2) for measurement in solution. The amperometric response of the biosensor correlated with the glucose concentration in the fluid that had been extracted through porcine skin with the magnetohydrodynamic technique.


Subject(s)
Biosensing Techniques , Glucose Oxidase , Blood Glucose , Blood Glucose Self-Monitoring , Enzymes, Immobilized , Extracellular Fluid , Glucose
SELECTION OF CITATIONS
SEARCH DETAIL
...