Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Naturwissenschaften ; 108(1): 1, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33270151

ABSTRACT

Gravity is very important for many organisms, including web-building spiders. Probably the best approach to study the relevance of gravity on organisms is to bring them to the International Space Station. Here, we describe the results of such an experiment where two juvenile Trichonephila clavipes (L.) (Araneae, Nephilidae) spiders were observed over a 2-month period in zero gravity and two control spiders under otherwise identical conditions on Earth. During that time, the spiders and their webs were photographed every 5 min. Under natural conditions, Trichonephila spiders build asymmetric webs with the hub near the upper edge of the web, and they always orient themselves downwards when sitting on the hub whilst waiting for prey. As these asymmetries are considered to be linked to gravity, we expected the spiders experiencing no gravity to build symmetric webs and to show a random orientation when sitting on the hub. We found that most, but not all, webs built in zero gravity were indeed quite symmetric. Closer analysis revealed that webs built when the lights were on were more asymmetric (with the hub near the lights) than webs built when the lights were off. In addition, spiders showed a random orientation when the lights were off but faced away from the lights when they were on. We conclude that in the absence of gravity, the direction of light can serve as an orientation guide for spiders during web building and when waiting for prey on the hub.


Subject(s)
Nesting Behavior/physiology , Spiders/physiology , Weightlessness , Animals , Darkness , Light , Nesting Behavior/radiation effects , Spiders/radiation effects
2.
Proc Biol Sci ; 277(1696): 3019-25, 2010 Oct 07.
Article in English | MEDLINE | ID: mdl-20462900

ABSTRACT

Almost all spiders building vertical orb webs face downwards when sitting on the hubs of their webs, and their webs exhibit an up-down size asymmetry, with the lower part of the capture area being larger than the upper. However, spiders of the genus Cyclosa, which all build vertical orb webs, exhibit inter- and intraspecific variation in orientation. In particular, Cyclosa ginnaga and C. argenteoalba always face upwards, and C. octotuberculata always face downwards, whereas some C. confusa face upwards and others face downwards or even sideways. These spiders provide a unique opportunity to examine why most spiders face downwards and have asymmetrical webs. We found that upward-facing spiders had upside-down webs with larger upper parts, downward-facing spiders had normal webs with larger lower parts and sideways-facing spiders had more symmetrical webs. Downward-facing C. confusa spiders were larger than upward- and sideways-facing individuals. We also found that during prey attacks, downward-facing spiders ran significantly faster downwards than upwards, which was not the case in upward-facing spiders. These results suggest that the spider's orientation at the hub and web asymmetry enhance its foraging efficiency by minimizing the time to reach prey trapped in the web.


Subject(s)
Orientation , Predatory Behavior , Spiders/physiology , Animals , Locomotion/physiology
3.
Naturwissenschaften ; 97(1): 43-52, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19789847

ABSTRACT

Orb-web building spiders (Araneae: Araneoidea, Uloboridae) can be considered as territorial central place foragers. In territorial central place foragers, the optimal foraging arena is circular, with the forager sitting in its centre. In orb webs, the spider's orientation (head up or head down) whilst waiting for prey on the hub of its web and the downwards-upwards asymmetry of its running speeds are the probable causes for the observed deviation of the hub from the web's centre. Here, we present an analytical model and a more refined simulation model to analyse the relationships amongst the spider's running speeds, its orientation whilst waiting for prey and the vertical asymmetry of orb webs. The results of our models suggest that (a) waiting for prey head down is generally favourable because it allows the spider to reach the prey in its web on average quicker than spiders waiting head up, (b) the downwards-upwards running speed asymmetry, together with the head-down orientation of most spiders, are likely causes for the observed vertical asymmetry of orb webs, (c) waiting head up can be advantageous for spiders whose downwards-upwards running speed asymmetry is small and who experience high prey tumbling rates and (d) spiders waiting head up should place their hub lower than similar spiders waiting head down.


Subject(s)
Housing, Animal/statistics & numerical data , Orientation/physiology , Predatory Behavior/physiology , Spiders/physiology , Animal Feed , Animals , Computer Simulation , Feeding Behavior/physiology , Posture , Probability , Territoriality
4.
Nature ; 424(6949): 636-7, 2003 Aug 07.
Article in English | MEDLINE | ID: mdl-12904780

ABSTRACT

The use of viscid silk in aerial webs as a means to capture prey was a key innovation of araneoid spiders and has contributed largely to their ecological success. Here I describe a single silk thread from a spider's web that bears glue droplets and has been preserved in Lebanese amber from the Early Cretaceous period for about 130 million years. This specimen not only demonstrates the antiquity of viscid silk and of the spider superfamily Araneoidea, but is also some 90 million years older than the oldest viscid spider thread previously reported in Baltic amber from the Eocene epoch.


Subject(s)
Fossils , Insect Proteins , Spiders/physiology , Adhesives , Amber , Animals , Lebanon , Silk , Spiders/classification , Time Factors
5.
Oecologia ; 125(4): 559-572, 2000 Dec.
Article in English | MEDLINE | ID: mdl-28547226

ABSTRACT

The fragmentation of natural habitats is generally considered to be a major threat to biodiversity. We investigated short-term responses of vascular plants (grasses and forbs) and four groups of invertebrates (ants, butterflies, grasshoppers and gastropods) to experimental fragmentation of calcareous grassland in the north-western Jura mountains, Switzerland. Three years after the initiation of fragmentation - which was created and maintained by mowing the area between the fragments - we compared species richness, diversity and composition of the different groups and the abundance of single species in fragments of different size (area: 20.25 m2, 2.25 m2 and 0.25 m2) with those in corresponding control plots. The abundances of 19 (29%) of the 65 common species examined were affected by fragmentation. However, the experimental fragmentation affected different taxonomic groups and single species to a different extent. Butterflies, the most mobile animals among the invertebrates studied, reacted most sensitively: species richness and foraging abundances of single butterfly species were lower in fragments than in control plots. Of the few other taxonomic groups or single species that were affected by the experimental fragmentation, most had a higher species richness or abundance in fragments than in control plots. This is probably because the type of fragmentation used is beneficial to some plants via decreased competition intensity along the fragment edges, and because some animals may use fragments as retreats between foraging bouts into the mown isolation area.

SELECTION OF CITATIONS
SEARCH DETAIL
...