Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(22): 23252-23265, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38854548

ABSTRACT

In chemistry, analyzing spectra through peak fitting is a crucial task that helps scientists extract useful quantitative information about a sample's chemical composition or electronic structure. To make this process more efficient, we have developed a new open-source software tool called SpectraFit. This tool allows users to perform quick data fitting using expressions of distribution and linear functions through the command line interface (CLI) or Jupyter Notebook, which can run on Linux, Windows, and MacOS, as well as in a Docker container. As part of our commitment to good scientific practice, we have introduced an output file-locking system to ensure the accuracy and consistency of information. This system collects input data, results data, and the initial fitting model in a single file, promoting transparency, reproducibility, collaboration, and innovation. To demonstrate SpectraFit's user-friendly interface and the advantages of its output file-locking system, we are focusing on a series of previously published iron-sulfur dimers and their XAS spectra. We will show how to analyze the XAS spectra via CLI and in a Jupyter Notebook by simultaneously fitting multiple data sets using SpectraFit. Additionally, we will demonstrate how SpectraFit can be used as a black box and white box solution, allowing users to apply their own algorithms to engineer the data further. This publication, along with its Supporting Information and the Jupyter Notebook, serves as a tutorial to guide users through each step of the process. SpectraFit will streamline the peak fitting process and provide a convenient, standardized platform for users to share fitting models, which we hope will improve transparency and reproducibility in the field of spectroscopy.

2.
J Am Chem Soc ; 142(45): 19023-19028, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33124796

ABSTRACT

Redox noninnocent ligands enhance the reactivity of the metal they complex, a strategy used by metalloenzymes and in catalysis. Herein, we report a series of copper complexes with the same ligand framework, but with a pendant nitrogen group that spans five different redox states between nitro and amine. Of particular interest is the synthesis of a unprecedented copper(I)-arylhydroxylamine complex. While hydroxylamines typically disproportionate or decompose in the presence of transition metal ions, the reactivity of this metastable species is arrested by the presence of an intramolecular hydrogen bond. Two-electron oxidation yields a copper(II)-(arylnitrosyl radical) complex that can dissociate to a copper(I) species with uncoordinated arylnitroso. This combination of ligand redox noninnocence and hemilability provides opportunities in catalysis for two-electron chemistry via a one-electron copper(I/II) shuttle, as exemplified with an aerobic alcohol oxidation.


Subject(s)
Amines/chemistry , Coordination Complexes/chemistry , Nitrogen/chemistry , Alcohols/chemistry , Copper/chemistry , Density Functional Theory , Hydroxylamines/chemistry , Ligands , Molecular Conformation , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...