Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 14(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34300887

ABSTRACT

Fatigue analysis is of great significance for thin-walled structures in the spacecraft industry to ensure their service reliability during operation. Due to the complex loadings of thin-walled structures under thermal-structural-acoustic coupling conditions, the calculation cost of finite element (FE) simulations is relatively expensive. To improve the computational efficiency of dynamic reliability analysis on thin-walled structures to within acceptable accuracy, a novel probabilistic approach named DC-ILSSVR was developed, in which the rotation matrix optimization (RMO) method was used to initially search for the model parameters of least squares support vector regression (LS-SVR). The distributed collaborative (DC) strategy was then introduced to enhance the efficiency of a component suffering from multiple failure modes. Moreover, a numerical example with respect to thin-walled structures was used to validate the proposed method. The results showed that RMO performed on LS-SVR model parameters provided competitive prediction accuracy, and hence the reliability analysis efficiency of thin-walled pipe was significantly improved.

2.
ASAIO J ; 66(1): 55-63, 2020 01.
Article in English | MEDLINE | ID: mdl-30893130

ABSTRACT

This article presents a primed left ventricle heart perfusion method to generate physiologic aortic pressure (AoP) and perform functional assessment. Isolated hearts of male Yorkshire pigs were used to study the hemodynamic behaviors of AoPs generated in the primed left ventricle heart perfusion (n = 6) and conventional (zero-loaded left ventricle) Langendorff perfusion (n = 6). The measurement results show that left ventricular pressure generated in the primed left ventricle heart perfusion is a determinant of physiologic AoP (i.e. systolic and diastolic pressures within physiologic range). The aortic pulse pressure (systolic pressure = 124.5 ± 1.7 mm Hg, diastolic pressure = 87.8 ± 0.9 mm Hg, aortic pulse pressure = 36.7 ± 2.6 mm Hg) from the primed left ventricle heart perfusion represents close match with the in vivo physiologic data. The volume in the left ventricle remains constant throughout the primed left ventricle heart perfusion, which allows us to perform isovolumetric left ventricular pressure measurement in ex vivo heart perfusion (EVHP). Left ventricular contractility measurements (maximum and minimum rates of left ventricular pressure change) were derived for cardiac assessment. In summary, the proposed primed left ventricle heart perfusion method is able to create physiologic AoP and enables left ventricular functional assessment in EVHP in porcine hearts.


Subject(s)
Arterial Pressure/physiology , Isolated Heart Preparation , Perfusion/instrumentation , Perfusion/methods , Ventricular Function/physiology , Animals , Blood Pressure/physiology , Heart/physiology , Heart Ventricles , Hemodynamics/physiology , Isolated Heart Preparation/instrumentation , Isolated Heart Preparation/methods , Male , Swine
3.
Cardiovasc Eng Technol ; 11(1): 96-110, 2020 02.
Article in English | MEDLINE | ID: mdl-31797263

ABSTRACT

PURPOSE: Windkessel impedance analysis has proven to be an effective technique for instituting artificial afterload on ex situ hearts. Traditional fixed parameter afterload modules, however, are unable to handle the changing contractile conditions associated with prolonged ex situ heart perfusion. In this paper, an adjustable afterload module is described comprising of three fully adjustable sub-components: a systemic resistor, a proximal resistor and a compliance chamber. METHODS: Using a centrifugal pump, the systemic resistor and compliance chamber were subjected to testing across their operating ranges, whereby the predictability of resistance and compliance values was evaluated. The components were then assembled, and the full module tested on three separate porcine hearts perfused for 6 h with success defined by the ability to maintain physiological systolic and diastolic aortic pressures across flow rate variability. RESULTS: For both the systemic resistor and compliance chamber, experimental measurements agreed with their theoretical equivalents, with coefficients of determination of 0.99 and 0.97 for the systemic resistor and compliance chamber, respectively. During ex situ perfusion, overall 95% confidence intervals demonstrate that physiological systolic (95-96.21 mmHg) and diastolic (26.8-28.8 mmHg) pressures were successfully maintained, despite large variability in aortic flow. Left ventricular contractile parameters, were found to be in line with those in previous studies, suggesting the afterload module has no detrimental impact on functional preservation. CONCLUSIONS: We conclude that due to the demonstrable control of our afterload module, we can maintain physiological aortic pressures in a passive afterload working mode across prolonged perfusion periods, enabling effective perfusion regardless of contractile performance.


Subject(s)
Aorta/physiopathology , Arterial Pressure , Models, Cardiovascular , Myocardial Contraction , Perfusion , Ventricular Function, Left , Animals , Compliance , Elastic Modulus , Isolated Heart Preparation , Male , Models, Animal , Sus scrofa , Time Factors
4.
Adv Sci (Weinh) ; 6(24): 1802230, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31871856

ABSTRACT

Since their debut in 2012, triboelectric nanogenerators (TENGs) have attained high performance in terms of both energy density and instantaneous conversion, reaching up to 500 W m-2 and 85%, respectively, synchronous with multiple energy sources and hybridized designs. Here, a comprehensive review of the design guidelines of TENGs, their performance, and their designs in the context of Internet of Things (IoT) applications is presented. The development stages of TENGs in large-scale self-powered systems and technological applications enabled by harvesting energy from water waves or wind energy sources are also reviewed. This self-powered capability is essential considering that IoT applications should be capable of operation anywhere and anytime, supported by a network of energy harvesting systems in arbitrary environments. In addition, this review paper investigates the development of self-charging power units (SCPUs), which can be realized by pairing TENGs with energy storage devices, such as batteries and capacitors. Consequently, different designs of power management circuits, supercapacitors, and batteries that can be integrated with TENG devices are also reviewed. Finally, the significant factors that need to be addressed when designing and optimizing TENG-based systems for energy harvesting and self-powered sensing applications are discussed.

5.
Sci Rep ; 7(1): 17143, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29215064

ABSTRACT

Bio-inspired technologies have remarkable potential for energy harvesting from clean and sustainable energy sources. Inspired by the hummingbird-wing structure, we propose a shape-adaptive, lightweight triboelectric nanogenerator (TENG) designed to exploit the unique flutter mechanics of the hummingbird for small-scale wind energy harvesting. The flutter is confined between two surfaces for contact electrification upon oscillation. We investigate the flutter mechanics on multiple contact surfaces with several free-standing and lightweight electrification designs. The flutter driven-TENGs are deposited on simplified wing designs to match the electrical performance with variations in wind speed. The hummingbird TENG (H-TENG) device weighed 10 g, making it one of the lightest TENG harvesters in the literature. With a six TENG network, the hybrid design attained a 1.5 W m-2 peak electrical output at 7.5 m/s wind speed with an approximately linear increase in charge rate with the increased number of TENG harvesters. We demonstrate the ability of the H-TENG networks to operate Internet of Things (IoT) devices from sustainable and renewable energy sources.

6.
J Med Syst ; 42(2): 25, 2017 Dec 23.
Article in English | MEDLINE | ID: mdl-29273867

ABSTRACT

Ex vivo heart perfusion has been shown to be an effective means of facilitating the resuscitation and assessment of donor hearts for cardiac transplantation. Over the last ten years however, only a few ex vivo perfusion systems have been developed for this application. While results have been promising, a system capable of facilitating multiple perfusion strategies on the same platform has not yet been realized. In this paper, the design, development and testing of a novel and modular ex vivo perfusion system is described. The system is capable of operating in three unique primary modes: the traditional Langendorff Mode, Pump-Supported Working-Mode, and Passive Afterload Working-Mode. In each mode, physiological hemodynamic parameters can be produced by managing perfusion settings. To evaluate heart viability, six experiments were conducted using porcine hearts and measuring several parameters including: pH, aortic pressure, lactate metabolism, coronary vascular resistance (CVR), and myocardial oxygen consumption. Pressure-volume relationship measurements were used to assess left ventricular contractility in each Working Mode. Hemodynamic and metabolic conditions remained stable and consistent across 4 h of ex vivo heart perfusion on the ex vivo perfusion system, validating the system as a viable platform for future development of novel preservation and assessment strategies.


Subject(s)
Equipment Design , Heart/physiology , Perfusion/methods , Animals , Heart Transplantation/methods , Hemodynamics , Hydrogen-Ion Concentration , Lactic Acid/metabolism , Oxygen Consumption , Swine
7.
Nanotechnology ; 28(18): 185403, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28397707

ABSTRACT

Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester's overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

8.
Biomaterials ; 35(9): 2798-808, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24424206

ABSTRACT

The goal of cardiac tissue engineering is to restore function to the damaged myocardium with regenerative constructs. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can produce viable, contractile, three-dimensional grafts that function in vivo. We sought to enhance the viability and functional maturation of cardiac tissue constructs by cyclical stretch. hESC-CMs seeded onto gelatin-based scaffolds underwent cyclical stretching. Histological analysis demonstrated a greater proportion of cardiac troponin T-expressing cells in stretched than non-stretched constructs, and flow sorting demonstrated a higher proportion of cardiomyocytes. Ultrastructural assessment showed that cells in stretched constructs had a more mature phenotype, characterized by greater cell elongation, increased gap junction expression, and better contractile elements. Real-time PCR revealed enhanced mRNA expression of genes associated with cardiac maturation as well as genes encoding cardiac ion channels. Calcium imaging confirmed that stretched constructs contracted more frequently, with shorter calcium cycle duration. Epicardial implantation of constructs onto ischemic rat hearts demonstrated the feasibility of this platform, with enhanced survival and engraftment of transplanted cells in the stretched constructs. This uniaxial stretching system may serve as a platform for the production of cardiac tissue-engineered constructs for translational applications.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , Myocytes, Cardiac/cytology , Stress, Mechanical , Tissue Engineering/methods , Animals , Calcium/metabolism , Cell Differentiation/genetics , Cell Line , Connexin 43/metabolism , Disease Models, Animal , Embryonic Stem Cells/ultrastructure , Feasibility Studies , Gene Expression Regulation , Humans , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/therapy , Myocardium/pathology , Rats , Rats, Nude , Tissue Scaffolds/chemistry , Wound Healing
9.
Sensors (Basel) ; 11(1): 1212-28, 2011.
Article in English | MEDLINE | ID: mdl-22346623

ABSTRACT

Knowledge of tissue mechanical properties is widely required by medical applications, such as disease diagnostics, surgery operation, simulation, planning, and training. A new portable device, called Tissue Resonator Indenter Device (TRID), has been developed for measurement of regional viscoelastic properties of soft tissues at the Bio-instrument and Biomechanics Lab of the University of Toronto. As a device for soft tissue properties in-vivo measurements, the reliability of TRID is crucial. This paper presents TRID's working principle and the experimental study of TRID's reliability with respect to inter-reliability, intra-reliability, and the indenter misalignment effect as well.

10.
J Biomech Eng ; 132(1): 014503, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20524751

ABSTRACT

A uniaxial cyclic stretch apparatus is designed and developed for tissue engineering research. The biostretch apparatus employs noncontact electromagnetic force to uniaxially stretch a rectangular Gelfoam or RTV silicon scaffold. A reliable controller is implemented to control four stretch parameters independently: extent, frequency, pattern, and duration of the stretch. The noncontact driving force together with the specially designed mount allow researchers to use standard Petri dishes and commercially available CO(2) incubators to culture an engineered tissue patch under well-defined mechanical conditions. The culture process is greatly simplified over existing processes. Further, beyond traditional uniaxial stretch apparatuses, which provide stretch by fixing one side of the scaffolds and stretching the other side, the new apparatus can also apply uniaxial stretch from both ends simultaneously. Using the biostretch apparatus, the distributions of the strain on the Gelfoam and GE RTV 6166 silicon scaffolds are quantitatively analyzed.


Subject(s)
Cell Culture Techniques/instrumentation , Flow Cytometry/instrumentation , Mechanotransduction, Cellular/physiology , Tissue Engineering/instrumentation , Equipment Design , Equipment Failure Analysis , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...