Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 48(28): 10703-10713, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31243411

ABSTRACT

Synthetic bulk and natural pyrite from the hydrothermal mine in Schönbrunn (Saxony, Germany) are confirmed to be stoichiometric FeS2 compounds and stable (for thermoelectric applications) up to ∼600 K by combined thermal, chemical, spectroscopic and X-ray diffraction analyses. Natural pyrite with a small amount (<0.6 wt%) of well-defined transition metal carbonates revealed characteristics of a nondegenerate semiconductor and is suitable as a model system for the investigation of thermoelectric performance. In the temperature range 50-600 K both natural and synthetic high quality bulk FeS2 samples show electrical resistivity and Seebeck coefficients varying within 220-5 × 10-3 Ω m and 4 - (-450) µV K-1, respectively. The large thermal conductivity (∼40 W m-1 K-1 at 300 K) is exclusively due to phononic contribution, showing a well pronounced maximum centered at ∼75 K for natural pyrite (grain size ≤5 mm). It becomes almost completely suppressed in the sintered bulk samples due to the increase of point defect concentration and additional scattering on the grain boundaries (grain size ≤100 µm). The thermoelectric performance of pure pyrite with ZT ∼ 10-6 at 600 K is indeed by a factor of ∼1000 worse than those reported earlier for some minerals and synthetic samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...