Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(36): 22572-22579, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32839329

ABSTRACT

Humans can impact the spatial transmission dynamics of infectious diseases by introducing pathogens into susceptible environments. The rate at which this occurs depends in part on human-mobility patterns. Increasingly, mobile-phone usage data are used to quantify human mobility and investigate the impact on disease dynamics. Although the number of trips between locations and the duration of those trips could both affect infectious-disease dynamics, there has been limited work to quantify and model the duration of travel in the context of disease transmission. Using mobility data inferred from mobile-phone calling records in Namibia, we calculated both the number of trips between districts and the duration of these trips from 2010 to 2014. We fit hierarchical Bayesian models to these data to describe both the mean trip number and duration. Results indicate that trip duration is positively related to trip distance, but negatively related to the destination population density. The highest volume of trips and shortest trip durations were among high-density districts, whereas trips among low-density districts had lower volume with longer duration. We also analyzed the impact of including trip duration in spatial-transmission models for a range of pathogens and introduction locations. We found that inclusion of trip duration generally delays the rate of introduction, regardless of pathogen, and that the variance and uncertainty around spatial spread increases proportionally with pathogen-generation time. These results enhance our understanding of disease-dispersal dynamics driven by human mobility, which has potential to elucidate optimal spatial and temporal scales for epidemic interventions.


Subject(s)
Communicable Diseases , Epidemics , Travel , Cell Phone Use , Communicable Diseases/epidemiology , Communicable Diseases/transmission , Humans , Models, Statistical , Namibia , Spatio-Temporal Analysis
2.
Palgrave Commun ; 52019 Mar 26.
Article in English | MEDLINE | ID: mdl-31579302

ABSTRACT

Statistics on internal migration are important for keeping estimates of subnational population numbers up-to-date as well as urban planning, infrastructure development and impact assessment, among other applications. However, migration flow statistics typically remain constrained by the logistics of infrequent censuses or surveys. The penetration rate of mobile phones is now high across the globe with rapid recent increases in ownership in low-income countries. Analysing the changing spatiotemporal distribution of mobile phone users through anonymized call detail records (CDRs) offers the possibility to measure migration at multiple temporal and spatial scales. Based on a dataset of 72 billion anonymized CDRs in Namibia from October 2010 to April 2014, we explore how internal migration estimates can be derived and modelled from CDRs at subnational and annual scales, and how precision and accuracy of these estimates compare to census-derived migration statistics. We also demonstrate the use of CDRs to assess how migration patterns change over time, with a finer temporal resolution compared to censuses. Moreover, we show how gravity-type spatial interaction models built using CDRs can accurately capture migration flows. Results highlight that estimates of migration flows made using mobile phone data is a promising avenue for complementing more traditional national migration statistics and obtaining more timely and local data.

3.
Int J Epidemiol ; 47(5): 1562-1570, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29947788

ABSTRACT

Background: Travel restrictions were implemented on an unprecedented scale in 2015 in Sierra Leone to contain and eliminate Ebola virus disease. However, the impact of epidemic travel restrictions on mobility itself remains difficult to measure with traditional methods. New 'big data' approaches using mobile phone data can provide, in near real-time, the type of information needed to guide and evaluate control measures. Methods: We analysed anonymous mobile phone call detail records (CDRs) from a leading operator in Sierra Leone between 20 March and 1 July in 2015. We used an anomaly detection algorithm to assess changes in travel during a national 'stay at home' lockdown from 27 to 29 March. To measure the magnitude of these changes and to assess effect modification by region and historical Ebola burden, we performed a time series analysis and a crossover analysis. Results: Routinely collected mobile phone data revealed a dramatic reduction in human mobility during a 3-day lockdown in Sierra Leone. The number of individuals relocating between chiefdoms decreased by 31% within 15 km, by 46% for 15-30 km and by 76% for distances greater than 30 km. This effect was highly heterogeneous in space, with higher impact in regions with higher Ebola incidence. Travel quickly returned to normal patterns after the restrictions were lifted. Conclusions: The effects of travel restrictions on mobility can be large, targeted and measurable in near real-time. With appropriate anonymization protocols, mobile phone data should play a central role in guiding and monitoring interventions for epidemic containment.


Subject(s)
Cell Phone/statistics & numerical data , Epidemics , Hemorrhagic Fever, Ebola/epidemiology , Travel/legislation & jurisprudence , Travel/statistics & numerical data , Hemorrhagic Fever, Ebola/transmission , Humans , Incidence , Infection Control/methods , Population Dynamics , Retrospective Studies , Sierra Leone/epidemiology
4.
Nat Commun ; 8(1): 2069, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234011

ABSTRACT

Seasonal variation in human mobility is globally ubiquitous and affects the spatial spread of infectious diseases, but the ability to measure seasonality in human movement has been limited by data availability. Here, we use mobile phone data to quantify seasonal travel and directional asymmetries in Kenya, Namibia, and Pakistan, across a spectrum from rural nomadic populations to highly urbanized communities. We then model how the geographic spread of several acute pathogens with varying life histories could depend on country-wide connectivity fluctuations through the year. In all three countries, major national holidays are associated with shifts in the scope of travel. Within this broader pattern, the relative importance of particular routes also fluctuates over the course of the year, with increased travel from rural to urban communities after national holidays, for example. These changes in travel impact how fast communities are likely to be reached by an introduced pathogen.


Subject(s)
Communicable Diseases/epidemiology , Human Migration/statistics & numerical data , Models, Biological , Seasons , Travel/statistics & numerical data , Cell Phone , Communicable Diseases/transmission , Geographic Information Systems , Human Migration/trends , Humans , Incidence , Kenya/epidemiology , Namibia/epidemiology , Pakistan/epidemiology , Rural Population/statistics & numerical data , Rural Population/trends , Travel/trends , Urban Population/statistics & numerical data , Urban Population/trends
5.
Popul Health Metr ; 14: 35, 2016.
Article in English | MEDLINE | ID: mdl-27777514

ABSTRACT

BACKGROUND: Reliable health metrics are crucial for accurately assessing disease burden and planning interventions. Many health indicators are measured through passive surveillance systems and are reliant on accurate estimates of denominators to transform case counts into incidence measures. These denominator estimates generally come from national censuses and use large area growth rates to estimate annual changes. Typically, they do not account for any seasonal fluctuations and thus assume a static denominator population. Many recent studies have highlighted the dynamic nature of human populations through quantitative analyses of mobile phone call data records and a range of other sources, emphasizing seasonal changes. In this study, we use mobile phone data to capture patterns of short-term human population movement and to map dynamism in population densities. METHODS: We show how mobile phone data can be used to measure seasonal changes in health district population numbers, which are used as denominators for calculating district-level disease incidence. Using the example of malaria case reporting in Namibia we use 3.5 years of phone data to investigate the spatial and temporal effects of fluctuations in denominators caused by seasonal mobility on malaria incidence estimates. RESULTS: We show that even in a sparsely populated country with large distances between population centers, such as Namibia, populations are highly dynamic throughout the year. We highlight how seasonal mobility affects malaria incidence estimates, leading to differences of up to 30 % compared to estimates created using static population maps. These differences exhibit clear spatial patterns, with likely overestimation of incidence in the high-prevalence zones in the north of Namibia and underestimation in lower-risk areas when compared to using static populations. CONCLUSION: The results here highlight how health metrics that rely on static estimates of denominators from censuses may differ substantially once mobility and seasonal variations are taken into account. With respect to the setting of malaria in Namibia, the results indicate that Namibia may actually be closer to malaria elimination than previously thought. More broadly, the results highlight how dynamic populations are. In addition to affecting incidence estimates, these changes in population density will also have an impact on allocation of medical resources. Awareness of seasonal movements has the potential to improve the impact of interventions, such as vaccination campaigns or distributions of commodities like bed nets.


Subject(s)
Malaria/epidemiology , Population Dynamics , Population Surveillance/methods , Seasons , Travel , Cell Phone , Humans , Incidence , Namibia , Population Dynamics/statistics & numerical data , Transients and Migrants
6.
Sci Data ; 3: 160066, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27529469

ABSTRACT

Human mobility continues to increase in terms of volumes and reach, producing growing global connectivity. This connectivity hampers efforts to eliminate infectious diseases such as malaria through reintroductions of pathogens, and thus accounting for it becomes important in designing global, continental, regional, and national strategies. Recent works have shown that census-derived migration data provides a good proxy for internal connectivity, in terms of relative strengths of movement between administrative units, across temporal scales. To support global malaria eradication strategy efforts, here we describe the construction of an open access archive of estimated internal migration flows in endemic countries built through pooling of census microdata. These connectivity datasets, described here along with the approaches and methods used to create and validate them, are available both through the WorldPop website and the WorldPop Dataverse Repository.


Subject(s)
Human Migration , Malaria/epidemiology , Censuses , Data Collection , Humans , Malaria/prevention & control
7.
Malar J ; 15(1): 273, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27169470

ABSTRACT

BACKGROUND: Numerous countries around the world are approaching malaria elimination. Until global eradication is achieved, countries that successfully eliminate the disease will contend with parasite reintroduction through international movement of infected people. Human-mediated parasite mobility is also important within countries near elimination, as it drives parasite flows that affect disease transmission on a subnational scale. METHODS: Movement patterns exhibited in census-based migration data are compared with patterns exhibited in a mobile phone data set from Haiti to quantify how well migration data predict short-term movement patterns. Because short-term movement data were unavailable for Mesoamerica, a logistic regression model fit to migration data from three countries in Mesoamerica is used to predict flows of infected people between subnational administrative units throughout the region. RESULTS: Population flows predicted using census-based migration data correlated strongly with mobile phone-derived movements when used as a measure of relative connectivity. Relative population flows are therefore predicted using census data across Mesoamerica, informing the areas that are likely exporters and importers of infected people. Relative population flows are used to identify community structure, useful for coordinating interventions and elimination efforts to minimize importation risk. Finally, the ability of census microdata inform future intervention planning is discussed in a country-specific setting using Costa Rica as an example. CONCLUSIONS: These results show long-term migration data can effectively predict the relative flows of infected people to direct malaria elimination policy, a particularly relevant result because migration data are generally easier to obtain than short-term movement data such as mobile phone records. Further, predicted relative flows highlight policy-relevant population dynamics, such as major exporters across the region, and Nicaragua and Costa Rica's strong connection by movement of infected people, suggesting close coordination of their elimination efforts. Country-specific applications are discussed as well, such as predicting areas at relatively high risk of importation, which could inform surveillance and treatment strategies.


Subject(s)
Censuses , Disease Eradication , Disease Transmission, Infectious/prevention & control , Human Migration , Malaria/prevention & control , Malaria/transmission , Costa Rica , Haiti , Health Policy , Humans , Malaria/epidemiology , Nicaragua/epidemiology , Travel
8.
PLoS Comput Biol ; 12(4): e1004846, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27043913

ABSTRACT

Humans move frequently and tend to carry parasites among areas with endemic malaria and into areas where local transmission is unsustainable. Human-mediated parasite mobility can thus sustain parasite populations in areas where they would otherwise be absent. Data describing human mobility and malaria epidemiology can help classify landscapes into parasite demographic sources and sinks, ecological concepts that have parallels in malaria control discussions of transmission foci. By linking transmission to parasite flow, it is possible to stratify landscapes for malaria control and elimination, as sources are disproportionately important to the regional persistence of malaria parasites. Here, we identify putative malaria sources and sinks for pre-elimination Namibia using malaria parasite rate (PR) maps and call data records from mobile phones, using a steady-state analysis of a malaria transmission model to infer where infections most likely occurred. We also examined how the landscape of transmission and burden changed from the pre-elimination setting by comparing the location and extent of predicted pre-elimination transmission foci with modeled incidence for 2009. This comparison suggests that while transmission was spatially focal pre-elimination, the spatial distribution of cases changed as burden declined. The changing spatial distribution of burden could be due to importation, with cases focused around importation hotspots, or due to heterogeneous application of elimination effort. While this framework is an important step towards understanding progressive changes in malaria distribution and the role of subnational transmission dynamics in a policy-relevant way, future work should account for international parasite movement, utilize real time surveillance data, and relax the steady state assumption required by the presented model.


Subject(s)
Malaria/epidemiology , Malaria/transmission , Models, Biological , Cell Phone/statistics & numerical data , Computational Biology , Data Interpretation, Statistical , Human Migration , Humans , Malaria/prevention & control , Namibia/epidemiology , Prevalence
9.
PLoS Curr ; 82016 Feb 24.
Article in English | MEDLINE | ID: mdl-26981327

ABSTRACT

INTRODUCTION: Sudden impact disasters often result in the displacement of large numbers of people. These movements can occur prior to events, due to early warning messages, or take place post-event due to damages to shelters and livelihoods as well as a result of long-term reconstruction efforts. Displaced populations are especially vulnerable and often in need of support. However, timely and accurate data on the numbers and destinations of displaced populations are extremely challenging to collect across temporal and spatial scales, especially in the aftermath of disasters. Mobile phone call detail records were shown to be a valid data source for estimates of population movements after the 2010 Haiti earthquake, but their potential to provide near real-time ongoing measurements of population displacements immediately after a natural disaster has not been demonstrated. METHODS: A computational architecture and analytical capacity were rapidly deployed within nine days of the Nepal earthquake of 25th April 2015, to provide spatiotemporally detailed estimates of population displacements from call detail records based on movements of 12 million de-identified mobile phones users. RESULTS: Analysis shows the evolution of population mobility patterns after the earthquake and the patterns of return to affected areas, at a high level of detail. Particularly notable is the movement of an estimated 390,000 people above normal from the Kathmandu valley after the earthquake, with most people moving to surrounding areas and the highly-populated areas in the central southern area of Nepal. DISCUSSION: This analysis provides an unprecedented level of information about human movement after a natural disaster, provided within a very short timeframe after the earthquake occurred. The patterns revealed using this method are almost impossible to find through other methods, and are of great interest to humanitarian agencies.

SELECTION OF CITATIONS
SEARCH DETAIL
...