Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Med Res ; 54(8): 102899, 2023 12.
Article in English | MEDLINE | ID: mdl-37925320

ABSTRACT

Cushing's disease (CD) is a life-threatening condition with a challenging diagnostic process and scarce treatment options. CD is caused by usually benign adrenocorticotrophic hormone (ACTH)-secreting pituitary neuroendocrine tumors (PitNETs), known as corticotropinomas. These tumors are predominantly of sporadic origin, and usually derive from the monoclonal expansion of a mutated cell. Somatic activating variants located within a hotspot of the USP8 gene are present in 11-62% of corticotropinomas, making USP8 the most frequent genetic driver of corticotroph neoplasia. In contrast, other somatic defects such as those affecting the glucocorticoid receptor gene (NR3C1), the BRAF oncogene, the deubiquitinase-encoding gene USP48, and TP53 are infrequent. Moreover, patients with familial tumor syndromes, such as multiple endocrine neoplasia, familial isolated pituitary adenoma, and DICER1 rarely develop corticotropinomas. One of the main molecular alterations in USP8-driven tumors is an overactivation of the epidermal growth factor receptor (EGFR) signaling pathway, which induces ACTH production. Hotspot USP8 variants lead to persistent EGFR overexpression, thereby perpetuating the hyper-synthesis of ACTH. More importantly, they condition a characteristic transcriptomic signature that might be useful for the clinical prognosis of patients with CD. Nevertheless, the clinical phenotype associated with USP8 variants is less well defined. Hereby we discuss the current knowledge on the molecular pathogenesis and clinical picture associated with USP8 hotspot variants. We focus on the potential significance of the USP8 mutational status for the design of tailored clinical strategies in CD.


Subject(s)
ACTH-Secreting Pituitary Adenoma , Adenoma , Pituitary ACTH Hypersecretion , Humans , Pituitary ACTH Hypersecretion/diagnosis , Pituitary ACTH Hypersecretion/genetics , Pituitary ACTH Hypersecretion/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , ACTH-Secreting Pituitary Adenoma/genetics , ACTH-Secreting Pituitary Adenoma/metabolism , Adrenocorticotropic Hormone , Adenoma/genetics , ErbB Receptors/metabolism , Ribonuclease III , DEAD-box RNA Helicases , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism
2.
Int J Nephrol ; 2018: 5459439, 2018.
Article in English | MEDLINE | ID: mdl-30416829

ABSTRACT

The aim of this single center cross-sectional study was to investigate the association between fructose intake and albuminuria in subjects with type 2 diabetes mellitus (T2DM). This is a single center cross-sectional study. One hundred and forty-three subjects with T2DM were recruited from the Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran. The median daily fructose intake was estimated with a prospective food registry during 3 days (2 week-days and one weekend day) and they were divided into low fructose intake (<25 g/day) and high fructose intake (≥ 25 g/day). Complete clinical and biochemical evaluations were performed, including anthropometric variables and a 24-hour urine collection for albuminuria determination. One hundred and thirty-six subjects were analyzed in this study. We found a positive significant association between daily fructose intake and albuminuria (ρ= 0.178, p=0.038) in subjects with type 2 diabetes mellitus. Other variables significantly associated with albuminuria were body mass index (BMI) (ρ= 0.170, p=0.048), mean arterial pressure (MAP) (ρ= 0.280, p=0.001), glycated hemoglobin (A1c) (ρ= 0.197, p=0.022), and triglycerides (ρ= 0.219, p=0.010). After adjustment for confounding variables we found a significant and independent association between fructose intake and albuminuria (ß= 13.96, p=0.006). We found a statistically significant higher albuminuria (60.8 [12.8-228.5] versus 232.2 [27.2-1273.0] mg/day, p 0.002), glycated hemoglobin (8.6±1.61 versus 9.6±2.1 %), p= 0.003, and uric acid (6.27±1.8 versus 7.2±1.5 mg/dL), p=0.012, in the group of high fructose intake versus the group with low fructose intake, and a statistically significant lower creatinine clearance (76.5±30.98 mL/min versus 94.9±36.8, p=0.014) in the group with high fructose intake versus the group with low fructose intake. In summary we found that a higher fructose intake is associated with greater albuminuria in subjects with T2DM.

SELECTION OF CITATIONS
SEARCH DETAIL
...