Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 11(11)2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30360524

ABSTRACT

The rapidly evolving field of additive manufacturing requires a periodic assessment of the progress made in understanding the properties of metallic components. Although extensive research has been undertaken by many investigators, the data on properties such as hardness from individual publications are often fragmented. When these published data are critically reviewed, several important insights that cannot be obtained from individual papers become apparent. We examine the role of cooling rate, microstructure, alloy composition and post process heat treatment on the hardness of additively manufactured aluminum, nickel, titanium and iron base components. Hardness data for steels and aluminum alloys processed by additive manufacturing and welding are compared to understand the relative roles of manufacturing processes. Furthermore, the findings are useful to determine if a target hardness is easily attainable either by adjusting AM process variables or through appropriate alloy selection.

2.
Sci Rep ; 6: 19717, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26796864

ABSTRACT

Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts.

SELECTION OF CITATIONS
SEARCH DETAIL
...