Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Biomater Sci ; 11(10): 3695-3708, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37022673

ABSTRACT

Auricular reconstruction in children with microtia is one of the more complex procedures in plastic surgery. Obtaining sufficient native material to build an ear requires harvesting large fragments of rib cartilage in children. Herein, we investigated how to optimize autologous chondrocyte isolation, expansion and re-implantation using polyglycolic acid (PGA) scaffolds for generating enough cartilage to recapitulate a whole ear starting from a small ear biopsy. Ear chondrocytes isolated from human microtia subjects grew slower than microtia rib or healthy ear chondrocytes and displayed a phenotypic shift due to the passage number. Rabbit ear chondrocytes co-cultured with mesenchymal stem cells (MSC) at a 50 : 50 ratio recapitulated the cartilage biological properties in vitro. However, PGA scaffolds with different proportions of rabbit chondrocytes and MSC did not grow substantially in two months when subcutaneously implanted in immunosuppressed mice. In contrast, rabbit chondrocyte-seeded PGA scaffolds implanted in immunocompetent rabbits formed a cartilage 10 times larger than the original PGA scaffold. This cartilage mimicked the biofunctional and mechanical properties of an ear cartilage. These results indicate that autologous chondrocyte-seeded PGA scaffolds fabricated following our optimized procedure have immense potential as a solution for obtaining enough cartilage for auricular reconstruction and opens new avenues to redefine autologous cartilage replacement.


Subject(s)
Chondrocytes , Congenital Microtia , Child , Humans , Rabbits , Animals , Mice , Ear Cartilage , Tissue Scaffolds , Polyglycolic Acid , Tissue Engineering/methods
2.
Ultrasound Med Biol ; 48(9): 1806-1821, 2022 09.
Article in English | MEDLINE | ID: mdl-35811237

ABSTRACT

We develop, automate and evaluate a calibration-free technique to estimate human carotid artery blood pressure from force-coupled ultrasound images. After acquiring images and force, we use peak detection to align the raw force signal with an optical flow signal derived from the images. A trained convolutional neural network selects a seed point within the carotid in a single image. We then employ a region-growing algorithm to segment and track the carotid in subsequent images. A finite-element deformation model is fit to the observed segmentation and force via a two-stage iterative non-linear optimization. The first-stage optimization estimates carotid artery wall stiffness parameters along with systolic and diastolic carotid pressures. The second-stage optimization takes the output parameters from the first optimization and estimates the carotid blood pressure waveform. Diastolic and systolic measurements are compared with those of an oscillometric brachial blood pressure cuff. In 20 participants, average absolute diastolic and systolic errors are 6.2 and 5.6 mm Hg, respectively, and correlation coefficients are r = 0.7 and r = 0.8, respectively. Force-coupled ultrasound imaging represents an automated, standalone ultrasound-based technique for carotid blood pressure estimation, which motivates its further development and expansion of its applications.


Subject(s)
Blood Pressure Determination , Carotid Arteries , Blood Pressure/physiology , Blood Pressure Determination/methods , Carotid Arteries/diagnostic imaging , Carotid Arteries/physiology , Humans , Oscillometry , Ultrasonography
3.
J Ultrasound Med ; 40(4): 779-786, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32951229

ABSTRACT

OBJECTIVES: Thyroid shear wave elastography (SWE) has been shown to have advantages compared to biopsy or other imaging modalities in the evaluation of thyroid nodules. However, studies show variability in its assessment. The objective of this study was to evaluate whether stiffness measurements of the normal thyroid, as estimated by SWE, varied due to preload force or the pressure applied between the transducer and the patient. METHODS: In this study, a measurement system was attached to the ultrasound transducer to measure the applied load. Shear wave elastographic measurements were obtained from the left lobe of the thyroid at applied transducer forces between 2 and 10 N. A linear mixed-effects model was constructed to quantify the association between the preload force and stiffness while accounting for correlations between repeated measurements within each participant. The preload force effect on elasticity was modeled by both linear and quadratic terms to account for a possible nonlinear association between these variables. RESULTS: Nineteen healthy volunteers without known thyroid disease participated in the study. The participants had a mean age ± SD of 36 ± 8 years; 74% were female; 74% had a normal body mass index; and 95% were white non-Hispanic/Latino. The estimated elastographic value at a 2-N preload force was 16.7 kPa (95% confidence interval, 14.1-19.3 kPa), whereas the value at 10 N was 29.9 kPa (95% confidence interval, 24.9-34.9 kPa). CONCLUSIONS: The preload force was significantly and nonlinearly associated with SWE estimates of thyroid stiffness. Quantitative standardization of preload forces in the assessment of thyroid nodules using elastography is an integral factor for improving the accuracy of thyroid nodule evaluation.


Subject(s)
Elasticity Imaging Techniques , Thyroid Nodule , Elasticity , Female , Humans , Male , Thyroid Nodule/diagnostic imaging
4.
IEEE Trans Biomed Eng ; 65(11): 2405-2416, 2018 11.
Article in English | MEDLINE | ID: mdl-30281436

ABSTRACT

OBJECTIVE: Our objective is to create a blood pressure measurement device, which may provide a way to easily acquire frequent measurements. Common techniques to measure blood pressure include an arterial catheter, an oscillometric pressure cuff, or an auscultatory pressure cuff. METHODS: The approach takes as input ultrasound images of an artery and contact force between the ultrasound array and subject. A subject may perform the self-measurements. Image and force data is analyzed for its quality and used to provide guidance or reject poor measurements. Tissue motions, due to probe contact forces and pulsing blood pressure, are estimated from the ultrasound image. Tissues elasticities and blood pressure are found by optimally fitting the observed tissue motion versus applied forces to a table of predicted motion-pre-generated with a finite element tissue deformation model. The output of the optimization is an estimate of systolic and diastolic blood pressure, arterial stiffness, and surrounding tissue stiffness. RESULTS: The real-time implementation of the algorithm was validated on a cohort of 21 single-visit volunteers and on four volunteers self-monitored longitudinally. The systolic and diastolic pressures were compared to oscillometric cuff readings. Regression and Bland-Altman analyses were performed. CONCLUSION: Systolic pressure and diastolic pressure can be estimated in real-time and by the subject using this novel non-invasive ultrasound-based method (systolic accuracy/precision: -5.2 mmHg/10.7 mmHg; diastolic accuracy/precision: -3.9/8.0 mmHg). SIGNIFICANCE: The method occupies a middle ground between the arterial catheter and cuff-based techniques. It has the potential to give calibration-free results.


Subject(s)
Blood Pressure Determination/methods , Signal Processing, Computer-Assisted , Algorithms , Blood Pressure/physiology , Carotid Arteries , Humans , Ultrasonography
5.
Ultrasound Med Biol ; 44(12): 2461-2475, 2018 12.
Article in English | MEDLINE | ID: mdl-30232020

ABSTRACT

Non-alcoholic fatty liver disease is a condition that is characterized by the presence of >5% fat in the liver and affects more than one billion people worldwide. If adequate and early precautions are not taken, non-alcoholic fatty liver disease can progress to cirrhosis and death. The current reference standard for detecting hepatic steatosis is a liver biopsy. However, because of the potential morbidity associated with liver biopsies, non-invasive imaging biomarkers have been extensively investigated. Magnetic resonance imaging-based methods have proven accuracy in quantifying liver steatosis; however, these techniques are costly and have limited availability. Ultrasound-based quantitative imaging techniques are increasingly utilized because of their widespread availability, ease of use and relative cost-effectiveness. Several ultrasound-based liver fat quantification techniques have been investigated, including techniques that measure changes in the acoustic properties of the liver caused by the presence of fat. In this review, we focus on quantitative ultrasound approaches and their diagnostic performance in the realm of non-alcoholic fatty liver disease.


Subject(s)
Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/pathology , Ultrasonography/methods , Evaluation Studies as Topic , Humans , Liver/diagnostic imaging , Liver/pathology , Reproducibility of Results , Severity of Illness Index
6.
Ultrasound Med Biol ; 44(12): 2739-2748, 2018 12.
Article in English | MEDLINE | ID: mdl-30228044

ABSTRACT

Described here is a method to determine the longitudinal speed of sound in speckle-dominated ultrasound images. The method is based on the concept that the quality of an ultrasound image is maximized when the beamformer's speed of sound matches the speed in the medium. The method captures the quality of the ultrasound image using two quantitative image-quality metrics: image brightness and sharpness around the intended focal zone. The proposed method requires no calibration, is computationally efficient and is deployable on commercial ultrasound systems without hardware or software modifications. Ex vivo testing on tissue-mimicking phantoms indicates the method's accuracy in predicting the true speed of sound to within 1% of ground truth values.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Liver/diagnostic imaging , Phantoms, Imaging , Ultrasonography/methods , Reproducibility of Results
7.
Ultrasound Med Biol ; 44(12): 2749-2758, 2018 12.
Article in English | MEDLINE | ID: mdl-30266215

ABSTRACT

This study validates a non-invasive, quantitative technique to diagnose steatosis within tissue. The proposed method is based on two fundamental concepts: (i) the speed of sound in a fatty liver is lower than that in a healthy liver and (ii) the quality of an ultrasound image is maximized when the beamformer's speed of sound matches the speed in the medium under examination. The method uses image brightness and sharpness as quantitative image-quality metrics to predict the true sound speed and capture the effects of fat infiltration, while accounting for the transmission through subcutaneous fat. Ex vivo testing on sheep liver, mouse livers and tissue-mimicking phantoms indicated the technique's ability to predict the true speed of sound with errors less than 0.5% and to quantify the inverse correlation between fat content and speed of sound.


Subject(s)
Fatty Liver/diagnostic imaging , Image Processing, Computer-Assisted/methods , Ultrasonography/methods , Animals , Disease Models, Animal , Liver/diagnostic imaging , Mice , Phantoms, Imaging , Reproducibility of Results , Sheep
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 2920-2923, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29060509

ABSTRACT

This paper introduces a non-invasive, quantitative technique to diagnose the progression of non-alcoholic fatty liver disease (NAFLD). The method is predicated on two fundamental principles: 1) the speed of sound in a fatty liver is lower than that in a healthy liver and 2) the quality of an ultrasound image is maximized when the beamformer's speed of sound matches the true speed of sound in the tissue being examined. The proposed method uses the echogenicity of an ultrasound image as a quantitative measure to estimate the true speed of sound within the liver parenchyma and capture its correlation with the underlying fat content. The proposed technique was evaluated in simulations and then tested ex vivo on sheep liver, mice liver (healthy and fatty) and tissue-mimicking phantoms. In the case of the phantom and sheep liver, the method was able to estimate the true speed of sound with errors of less than 0.5%; in the case of the mice livers, the method was able to accurately estimate the speed of sound within the livers (less than 1% error) and capture the correlation between fat content and speed of sound. Thereby, demonstrating the capability of ultrasound technology to non-invasively, quantitatively, and accurately diagnose NAFLD at point of care.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Liver , Mice , Phantoms, Imaging , Sheep , Sound , Ultrasonography
9.
Biomicrofluidics ; 8(2): 024105, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24738012

ABSTRACT

A spiral inertial filtration (SIFT) device that is capable of high-throughput (1 ml/min), high-purity particle separation while concentrating recovered target particles by more than an order of magnitude is reported. This device is able to remove large fractions of sample fluid from a microchannel without disruption of concentrated particle streams by taking advantage of particle focusing in inertial spiral microfluidics, which is achieved by balancing inertial lift forces and Dean drag forces. To enable the calculation of channel geometries in the SIFT microsystem for specific concentration factors, an equivalent circuit model was developed and experimentally validated. Large particle concentration factors were then achieved by maintaining either the average fluid velocity or the Dean number throughout the entire length of the channel during the incremental removal of sample fluid. The SIFT device was able to separate MCF7 cells spiked into whole blood from the non-target white blood cells (WBC) with a recovery of nearly 100% while removing 93% of the sample volume, which resulted in a concentration enhancement of the MCF7 cancer cells by a factor of 14.

10.
Biomed Microdevices ; 15(4): 645-655, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23515914

ABSTRACT

We report for the first time a microdevice that enables the selective enrichment, culture, and identification of tumor-initiating cells on native polydimethylsiloxane (PDMS). For nearly a decade, researchers have identified tumor-initiating breast cancer cells within heterogeneous populations of breast cancer cells by utilizing low-attachment serum-free culture conditions, which lead to the formation of spheroidal colonies (mammospheres) that are enriched for tumor-initiating cells. However, the utility of this assay has been limited by difficulties in combining this culture-plate-based technique with other cellular and molecular analyses. Integrating the mammosphere technique into a microsystem can enable it to be combined directly with a number of functions, such as cell sorting, drug screens, and molecular assays. In this work, we demonstrate mammosphere culture within a PDMS microdevice. We first prove that a native hydrophobic PDMS surface is as effective as commercial low-attachment plates at selectively promoting the formation of mammospheres. We then experimentally assess the PDMS microdevice. Time-lapse images of mammosphere formation within the microdevice show that mammospheres form from single cells or small clusters of cells. Following formation of the mammospheres, it is desirable to evaluate the cells within the spheroids for enrichment of tumor initiating cells. To perform assays such as this (which require the loading and rinsing of reagents) without flushing the cells (which are in suspension) from the device, the culture chamber is separated from a reagent reservoir by a commercially available microporous membrane, and thus reagents are exchanged between the reservoir and the culture chamber by diffusion only. Using this capability, we verify that the mammospheres are enriched for tumor initiating cells by staining aldehyde dehydrogenase activity, a cancer stem cell marker. To the best of our knowledge, this is the first assay that enables the direct observation of tumor-initiating cells within a suspended mammosphere.


Subject(s)
Breast Neoplasms/pathology , Cell Culture Techniques/instrumentation , Microtechnology/instrumentation , Neoplastic Stem Cells/pathology , Spheroids, Cellular/cytology , Aldehyde Dehydrogenase/metabolism , Biomarkers, Tumor/metabolism , Dimethylpolysiloxanes/chemistry , Humans , Indicators and Reagents/chemistry , MCF-7 Cells , Neoplastic Stem Cells/metabolism , Reproducibility of Results , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...