Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 189: 114495, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876585

ABSTRACT

The texture of tomato products can be modified by choice of variety, their growing conditions and/or processing method, but no clear explanation exists of the mechanisms that transform fruit tissue, how they act on texture, or whether genetics and processing impact the same physical parameters. We therefore conducted a study that processed 4 varieties produced under low/high nitrogen supply, into puree using both hot and cold break processes. No specific rheological signature allows discrimination between cultivar-induced or process-induced textural changes, but that they can be distinguished by sensory analysis. Growth conditions impacted but was not sensory distinguished. Both caused significant variations in 7 of 11 physico-chemical parameters, but the order of importance of these traits controlling texture varied, depending on whether the cause was genetic or process-related. Analysis of alcohol insoluble solids revealed a specific signature in pectin composition and conformation that could be linked to particle aggregation in the presence of lycopene-rich particles.


Subject(s)
Food Handling , Fruit , Rheology , Solanum lycopersicum , Solanum lycopersicum/chemistry , Viscosity , Food Handling/methods , Fruit/chemistry , Pectins/chemistry , Lycopene/analysis , Taste , Carotenoids/analysis , Carotenoids/chemistry , Humans
2.
Int J Food Microbiol ; 210: 62-72, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26093992

ABSTRACT

In this study, a risk assessment of proteolytic Clostridium botulinum in canned foie gras was performed, the number of illnesses per year in France due to C. botulinum in foie gras was estimated. Data on initial level in raw materials were collected at manufacturers and analysed using a Negative Binomial distribution. The effect of the usual foie gras heat treatment (equivalent time at 121 °C: F0=0.5 min) was considered at two levels: first, it led to an inactivation (estimated to 2.3 log); second it led to a spore injury and then to a spore inhibition. This latter effect was assessed by analysing data from a challenge test study carried out with Clostridium sporogenes spores in the foie gras product. The probability of spore recovering after thermal inhibition was estimated to 9.5×10(-8) (corresponding to 7.0 log). The data on the consumption pattern were collected on the French market. The Quantitative Microbiological Risk Assessment (QMRA) model and all the assumptions are reported in detail in the study. The initial contamination of raw materials, effect of thermal treatment on microbial inactivation and spore inhibition were handled mathematically using a probabilistic framework, considering only the variability dimension. The model was implemented in Excel and run through Monte Carlo simulation, using @Risk software. In parallel, epidemiological data collected from the French Institute for Public Health Surveillance during the period 2001-2012 were used to estimate an Appropriate Level Of Protection (ALOP) and then a Food Safety Objective (FSO): ALOP equalled to 2.5×10(-3) illnesses per million inhabitant per year, FSO equalled to 1.4×10(-9) foie gras portions containing C. botulinum spore (expressed in decimal logarithm, FSO=-8.9). The QMRA model output values were smaller, but on the same order of magnitude as these two figures: 8.0×10(-4) illnesses per million inhabitants per year, and, 4.5×10(-10) (-9.3 log) foie gras portions containing C. botulinum spores able to recover. It was then possible to conclude that the current practices regarding thermal treatment of canned foie gras are sufficient to control the risk of C. botulinum in foie gras in France.


Subject(s)
Botulism/epidemiology , Food Handling/standards , Food Microbiology , Botulism/prevention & control , Clostridium/isolation & purification , Clostridium/physiology , Clostridium botulinum/isolation & purification , Clostridium botulinum/physiology , France/epidemiology , Hot Temperature , Humans , Microbial Viability , Models, Statistical , Risk Assessment , Spores, Bacterial/isolation & purification
3.
Biotechnol Bioeng ; 88(1): 15-25, 2004 Oct 05.
Article in English | MEDLINE | ID: mdl-15384039

ABSTRACT

A small sized single-component enzymatic time temperature integrator (TTI) was developed. It consisted of glass beads coated with Bacillus licheniformis alpha-amylase (BLA) and stabilizing additives in a dehydrated form. Post heating residual enzymatic activity was used as a response property of the TTI. Under isothermal conditions, different batches of the system were characterized by z(TTI)-values around 13.5 degrees C in the temperature range 100-130 degrees C as well as by their ability to provide a response within 5 min after thermal processing. When used under non-isothermal conditions in a model food (silicone spheres), the system allowed to measure process-values (zTTI)F(121.1 degrees C) up to 60 min with an average error of 10.9%. The capabilities of the system were validated in a real solid/liquid food matrix sterilized by retorting. The combination of F(TTI)-values with heat transfer simulations based on finite difference calculations allowed for the determination of process values, which evaluated actual process-values (10 degrees C)F(121.1 degrees C) up to 90 min with an average error of 11.4%. The good performances of the system as well as its easiness of preparation and use, make the latter a valuable biological device for thermal process assessment.


Subject(s)
Bacillus/enzymology , Food Contamination/prevention & control , Hot Temperature , Sterilization/methods , Temperature , Time , Enzyme Stability , Meat Products/microbiology , Safety , Sterilization/instrumentation
4.
Biotechnol Prog ; 18(5): 1087-94, 2002.
Article in English | MEDLINE | ID: mdl-12363362

ABSTRACT

Heat denaturation kinetics of Bacillus licheniformis alpha-amylase, equilibrated at 81% equilibrium relative humidity at 4 degrees C (BLA81), was studied with help of isothermal and nonisothermal conditions by monitoring the decrease in enthalpy associated with the heat denaturation of the enzyme. Due to its low water content, BLA81 denaturation could be studied in the range of 118-124 degrees C. Two batches of BLA81 were successfully validated under nonisothermal conditions allowing the determinations of process values (reference temperature of 121.1 degrees C) in the range of 1-15 min. In a second step, BLA81 was used as a time-temperature integrator (TTI) to investigate potential differences of process values received by freely moving spherical particles as compared to a centrally fixed particle (single-position impact) inside cans containing water as brine. Results showed that the process value received by freely moving particles can be from 5.6% (4 rpm) to 19.7% (8 rpm) smaller than the process value received by the centrally fixed sphere. This means that evaluating the process value by means of a particle fixed at the critical point in a package can lead to potentially overestimations of the actual process value with possible hazardous quality/safety implications. These results highlight the potentials of the TTI technology to monitor the safety of heat-processed agitated solid/liquid foodstuffs.


Subject(s)
Bacillus/enzymology , Food Handling/instrumentation , Food Handling/methods , Hot Temperature , Thermometers , Transducers , alpha-Amylases/chemistry , Bacillus/classification , Enzyme Activation , Enzyme Stability , Enzymes/chemistry , Food Preservation/instrumentation , Food Preservation/methods , Protein Denaturation , Sensitivity and Specificity , Species Specificity , Temperature , Time Factors , alpha-Amylases/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...