Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Skin Res Technol ; 30(3): e13622, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38500350

ABSTRACT

BACKGROUND AND OBJECTIVE: Skin thermal diffusivity plays a crucial role in various applications, including laser therapy and cryogenic skin cooling.This study investigates the correlation between skin thermal diffusivity and two important skin parameters, melanin content and erythema, in a cohort of 102 participants. METHODS: An in-house developed device based on transient temperature measurement was used to assess thermal diffusivity at different body locations. Melanin content and erythema were measured using a colorimeter. Statistical analysis was performed to examine potential correlations. RESULTS: The results showed that the measured thermal diffusivity values were consistent with previous reports, with variations observed among subjects. No significant correlation was found between thermal diffusivity and melanin content or erythema. This suggests that other factors, such as skin hydration or epidermis thickness, may have a more dominant influence on skin thermal properties. CONLCUSION: This research provides valuable insights into the complex interplay between skin thermal properties and physiological parameters, with potential implications for cosmetic and clinical dermatology applications.


Subject(s)
Melanins , Skin Pigmentation , Humans , Skin/diagnostic imaging , Erythema , Epidermis
2.
Chemphyschem ; 18(5): 470-479, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-27976501

ABSTRACT

Positron annihilation spectroscopy (PAS) is a powerful method to study the size and connectivity of pores in zeolites. The lifetime of positronium within the host material is commonly described by the Tao-Eldrup model. However, one of its largest limitations arises from the simple geometries considered for the shape of the pores, which cannot describe accurately the complex topologies in zeolites. Here, an atomic model that combines the Tao potential with the crystallographic structure is introduced to calculate the distribution and lifetime of Ps intrinsic to a given framework. A parametrization of the model is undertaken for a set of widely applied zeolite framework types (*BEA, FAU, FER, MFI, MOR, UTL), before extending the model to all known structures. The results are compared to structural and topological descriptors, and to the Tao-Eldrup model adapted for zeolites, demonstrating the intricate dependence of the lifetime on the pore architecture.

3.
Phys Chem Chem Phys ; 18(13): 9211-9, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26975204

ABSTRACT

Recent studies demonstrated the power of positron annihilation lifetime spectroscopy (PALS) to characterise the connectivity and corresponding effectiveness of hierarchical pore networks in zeolites. This was based on the fractional escape of ortho-positronium (Ps), formed within the micropore framework, to vacuum. To further develop this technique, here we assess the impact of the positron implantation energy and of the zeolite crystal size and the particle morphology. Conventional measurements using fast positrons and beam measurements applying moderated positrons both readily distinguish purely microporous ZSM-5 zeolites comprised of single crystals or crystal aggregates. Unlike beam measurements, however, conventional measurements fail to discriminate model hierarchical zeolites with open or constricted mesopore architectures. Several steps are taken to rationalise these observations. The dominant contribution of Ps diffusion to the PALS response is confirmed by capping the external surface of the zeolite crystals with tetraethylorthosilicate, which greatly enhances the sensitivity to the micropore network. A one-dimensional model is constructed to predict the out-diffusion of Ps from a zeolite crystal, which is validated experimentally by comparing coffin-shaped single crystals of varying size. Calculation of the trends expected on the application of fast or moderated positrons indicates that the distinctions in the initial distribution of Ps at the crystal level cannot explain the limited sensitivity of the former to the mesopore architecture. Instead, we propose that the greater penetration of fast positrons within the sample increases the probability of Ps re-entry from intercrystalline voids into mesopores connected with the external surface of zeolite crystals, thereby reducing their fractional escape.

SELECTION OF CITATIONS
SEARCH DETAIL
...