Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108433

ABSTRACT

The initial phases of molecular and cellular maladaptive bone responses in early chronic kidney disease (CKD) remain mostly unknown. We induced mild CKD in spontaneously hypertensive rats (SHR) by either causing arterial hypertension lasting six months (sham-operated rats, SO6) or in its' combination with 3/4 nephrectomy lasting two and six months (Nx2 and Nx6, respectively). Sham-operated SHRs (SO2) and Wistar Kyoto rats (WKY2) with a two-month follow-up served as controls. Animals were fed standard chow containing 0.6% phosphate. Upon follow-up completion in each animal, we measured creatinine clearance, urine albumin-to-creatinine ratio, renal interstitial fibrosis, inorganic phosphate (Pi) exchange, intact parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), Klotho, Dickkopf-1, sclerostin, and assessed bone response by static histomorphometry and gene expression profiles. The mild CKD groups had no increase in renal Pi excretion, FGF23, or PTH levels. Serum Pi, Dickkopf-1, and sclerostin were higher in Nx6. A decrease in trabecular bone area and osteocyte number was obvious in SO6. Nx2 and Nx6 had additionally lower osteoblast numbers. The decline in eroded perimeter, a resorption index, was only apparent in Nx6. Significant downregulation of genes related to Pi transport, MAPK, WNT, and BMP signaling accompanied histological alterations in Nx2 and Nx6. We found an association between mild CKD and histological and molecular features suggesting lower bone turnover, which occurred at normal levels of systemic Pi-regulating factors.


Subject(s)
Kidney , Renal Insufficiency, Chronic , Rats , Animals , Kidney/metabolism , Osteogenesis , Phosphate Transport Proteins/metabolism , Creatinine/metabolism , Fibroblast Growth Factors/metabolism , Renal Insufficiency, Chronic/complications , Parathyroid Hormone/metabolism , Phosphates/metabolism , Signal Transduction , Gene Expression
2.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924991

ABSTRACT

BACKGROUND: Arterial hypertension (AH) is associated with heart and chronic kidney disease (CKD). However, the precise mechanisms of myocardial remodeling (MR) in the settings of CKD remain elusive. We hypothesized that TRPC6, calcineurin/NFAT, and Wnt/ß-catenin signaling pathways are involved in the development of MR in the background of CKD and AH. METHODS: Early CKD was induced by performing a 5/6 nephrectomy (5/6NE) in spontaneously hypertensive rats (SHR-NE). Sham-operated (SO) SHR (SHR-SO) and Wistar Kyoto (WKY-SO) rats served as controls. Systolic blood pressure (SBP), heart rate, myocardial mass index (MMI), serum creatinine, cardiomyocyte diameter (dCM), myocardial fibrosis (MF), serum and kidney α-Klotho levels, myocardial expression of calcineurin (CaN), TRPC6, and ß-catenin were measured two months after 5/6NE or SO. RESULTS: NE-induced kidney dysfunction corresponded to mild-to-moderate human CKD and was associated with an increase in FGF23 and a decrease in renal α-Klotho. The levels of SBP, MMI, dCM, and MF were higher in SHRs compared to WKY-SO as well as in SHR-NE vs. SHR-SO. The MR was associated with increased cardiomyocyte expression of CaN/NFAT and ß-catenin along with its intracellular re-distribution. TRPC6 protein levels were substantially elevated in both SHR groups with higher Trpc6 mRNA expression in SHR-NE. CONCLUSIONS: The Wnt/ß-catenin and TRPC6/CaN/NFAT hypertrophic signaling pathways seem to be involved in myocardial remodeling in the settings of AH and CKD and might be mediated by FGF23 and α-Klotho axis.


Subject(s)
Cardiomegaly/metabolism , Myocytes, Cardiac/metabolism , TRPC Cation Channels/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Calcineurin/metabolism , Cardiomegaly/etiology , Fibroblast Growth Factor-23 , Hypertension/complications , Male , NFATC Transcription Factors/metabolism , Nephrectomy , Rats, Inbred SHR , Rats, Inbred WKY , Renal Insufficiency, Chronic/complications , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL