Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2402991, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874424

ABSTRACT

The widespread application of green hydrogen production technologies requires cost reduction of crucial elements. To achieve this, a viable pathway to reduce the iridium loading in proton exchange membrane water electrolysis (PEMWE) is explored. Herein, a scalable synthesis method based on a photodeposition process for a TiO2@IrOx core-shell catalyst with a reduced iridium content as low as 40 wt.% is presented. Using this synthesis method, titania support particles homogeneously coated with a thin iridium oxide shell of only 2.1 ± 0.4 nm are obtained. The catalyst exhibits not only high ex situ activity, but also decent stability compared to commercially available catalysts. Furthermore, the unique core-shell structure provides a threefold increased electrical powder conductivity compared to structures without the shell. In addition, the low iridium content facilitates the fabrication of sufficiently thick catalyst layers at decreased iridium loadings mitigating the impact of crack formation in the catalyst layer during PEMWE operation. It is demonstrated that the novel TiO2@IrOx core-shell catalyst clearly outperforms the commercial reference in single-cell tests with an iridium loading below 0.3 mgIr cm-2 exhibiting a superior iridium-specific power density of 17.9 kW gIr -1 compared to 10.4 kW gIr -1 for the commercial reference.

2.
Sci Rep ; 12(1): 6870, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477728

ABSTRACT

Understanding the underlying processes of biomineralization is crucial to a range of disciplines allowing us to quantify the effects of climate change on marine organisms, decipher the details of paleoclimate records and advance the development of biomimetic materials. Many biological minerals form via intermediate amorphous phases, which are hard to characterize due to their transient nature and a lack of long-range order. Here, using Monte Carlo simulations constrained by X-ray and neutron scattering data together with model building, we demonstrate a method for determining the structure of these intermediates with a study of amorphous calcium carbonate (ACC) which is a precursor in the bio-formation of crystalline calcium carbonates. We find that ACC consists of highly ordered anhydrous nano-domains of approx. 2 nm that can be described as nanocrystalline. These nano-domains are held together by an interstitial net-like matrix of water molecules which generate, on the mesoscale, a heterogeneous and gel-like structure of ACC. We probed the structural stability and dynamics of our model on the nanosecond timescale by molecular dynamics simulations. These simulations revealed a gel-like and glassy nature of ACC due to the water molecules and carbonate ions in the interstitial matrix featuring pronounced orientational and translational flexibility. This allows for viscous mobility with diffusion constants four to five orders of magnitude lower than those observed in solutions. Small and ultra-small angle neutron scattering indicates a hierarchically-ordered organization of ACC across length scales that allow us, based on our nano-domain model, to build a comprehensive picture of ACC formation by cluster assembly from solution. This contribution provides a new atomic-scale understanding of ACC and provides a framework for the general exploration of biomineralization and biomimetic processes.


Subject(s)
Biomimetic Materials , Calcium Carbonate , Calcium Carbonate/chemistry , Ions , Molecular Dynamics Simulation , Water/chemistry
3.
Nanomedicine (Lond) ; 16(23): 2075-2094, 2021 10.
Article in English | MEDLINE | ID: mdl-34523349

ABSTRACT

Background: Poly(lactic-co-glycolic) acid (PLGA) nanoparticles can be prepared by emulsion-solvent-evaporation from o/w and w1/o/w2 emulsions. Aims: To elaborate similarities and differences regarding mechanical, morphological and physicochemical properties, as well as endocytosis and dose-dependent immune responses by primary human leukocytes between nanoparticles prepared by these two methods. Methods: Fluorescently labeled as well as TLR agonist (R848)-loaded PLGA nanoparticles were prepared via both single- and double-emulsion solvent evaporation. Results: Particles prepared by both methods were similar in chemical composition and surface charge but exhibited slight differences in size and morphology. Pronounced differences were found for loading, dissolution and mechanical properties. The particles were differently endocytosed by monocytes and induced qualitatively and quantitatively different immune responses. Conclusions: Variations in nanoparticle preparation can affect particle-derived immunological characteristics.


Subject(s)
Nanoparticles , Polyglycolic Acid , Drug Carriers , Emulsions , Endocytosis , Glycols , Humans , Lactic Acid , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer
4.
Chemistry ; 25(63): 14430-14440, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31478582

ABSTRACT

The successful synthesis of hierarchically structured titanium silicalite-1 (TS-1) with large intracrystalline macropores by steam-assisted crystallisation of mesoporous silica particles is reported. The macropore topology was imaged in 3D by using electron tomography and synchrotron radiation-based ptychographic X-ray computed tomography, revealing interconnected macropores within the crystals accounting for about 30 % of the particle volume. The study of the macropore formation mechanism revealed that the mesoporous silica particles act as a sacrificial macropore template during the synthesis. Silicon-to-titanium ratio of the macroporous TS-1 samples was successfully tuned from 100 to 44. The hierarchically structured TS-1 exhibited high activity in the liquid phase epoxidation of 2-octene with hydrogen peroxide. The hierarchically structured TS-1 surpassed a conventional nano-sized TS-1 sample in terms of alkene conversion and showed comparable selectivity to the epoxide. The flexible synthesis route described here can be used to prepare hierarchical zeolites with improved mass transport properties for other selective oxidation reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...