Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(15): 10746-10755, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32672944

ABSTRACT

Herein, we combine for the first time SQUID magnetometry, cw-EPR, THz-EPR, and paramagnetic NMR spectroscopies to study the magnetic properties of a high-spin cobalt(II) heteroscorpionate complex. Complementary information provided by these methods allowed precise determination of the magnetic interaction parameters, thereby removing the ambiguity inherit to single-method studies. We systematically investigate the extent to which information about the magnetic interaction parameters can be deduced from reduced data sets. The detailed study revealed significant different magnetic properties in solid state and solution. To further exploit the information content of the solution NMR experimental results, we introduce the new concept of reduced paramagnetic shift. It allows for the determination of the magnetic axes and, subsequently, full NMR signal assignment. It is shown that even in complicated cases, in which common NMR analytics (integral intensities, relaxation factors, etc.) fail, it yields robust results.

2.
Polymers (Basel) ; 10(11)2018 Nov 17.
Article in English | MEDLINE | ID: mdl-30961206

ABSTRACT

A series of ultrahigh molecular weight polyethylenes with viscosity-average molecular weights in the range of 1.6⁻5.6 × 106 have been prepared by using a novel Ziegler⁻Natta-type catalytic system-TiCl4/2,2'-dimethoxy-1,1'-binaphthalene/Et3Al2Cl3/Bu2Mg at different temperatures (Tpoly) in the range between 10 and 70 °C in toluene. The morphology of the nascent reactor powders has been studied by scanning electron microscopy, wide-angle X-ray diffraction, and the DSC melting behavior. Polymers are suitable for the modern processing methods-the solvent-free solid-state formation of super high-strength (tensile strength over 1.8⁻2.5 GPa) and high-modulus (elastic modulus up to 136 GPa) oriented film tapes. With decrease of Tpoly, the drawability of the reactor powders increased significantly.

3.
Polymers (Basel) ; 10(1)2017 Dec 21.
Article in English | MEDLINE | ID: mdl-30966039

ABSTRACT

Catalytic systems containing TiCl4 or TiCl3, THF, organomagnesium (n-Bu2Mg) and organoaluminum compounds capable of producing ultrahigh molecular weight polyethylene (UHMWPE) were developed. The resulting polymers were characterized by a molecular weight in the range of (1.8⁻7.8) × 106 Da and desirable morphology, suitable for modern methods of polymer processing-the solvent-free solid-state processing of superhigh-strength (tensile strength up to 2.1 GPa) and high-modulus (elastic modulus up to 125 GPa) oriented films and film tapes. The impacts of a THF additive, the oxidation state of the titanium atom, and the composition and nature of the nontransition organometallic compounds on the formation of catalytic systems for UHMWPE production were evaluated. The results indicate the suitability of individual titanium chloride tetrahydrofuran complex application for the formation of THF-containing catalytic systems. This approach also results in a significant increase in the system catalytic activity and mechanical properties of UHMWPE. The catalysts based on Ti(III) were inferior to systems containing Ti(IV) in productivity but were markedly superior in the mechanical properties of UHMWPE.

SELECTION OF CITATIONS
SEARCH DETAIL
...