Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 80(Pt 1): 38-41, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38205839

ABSTRACT

The crystal structure of zharchikhite, AlF(OH)2, from the Zharchikhinskoe deposit (Buryatia, Russia) is solved here using single-crystal X-ray diffraction. The mineral is monoclinic, space group P21/c, a = 5.1788 (4), b = 7.8386 (4), c = 5.1624 (4) Å, ß = 116.276 (10)°, V = 187.91 (3) Å3 and Z = 4. Zharchikhite demonstrates a novel structure type roughly related to the α-PbO2 structure type and different from other compounds of the Al-F-OH system. The crystal structure of zharchikhite is based on the octahedral pseudoframework built from zigzag chains of edge-sharing AlF2(OH)4 octahedra; adjacent chains are linked via F vertices and the pseudoframework contains wide channels.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 4): 296-304, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37402162

ABSTRACT

The crystal chemistry of the natural microporous two-layer aluminosilicates (2D zeolites) latiumite and tuscanite is re-investigated based on new data on the chemical composition, crystal structures, and infrared and Raman spectra. The CO32--depleted and P- and H-enriched samples from Sacrofano paleovolcano, Lazio, Italy, are studied. Both minerals are monoclinic; latiumite P21, a = 12.0206 (3), b = 5.09502 (10), c = 10.8527 (3) Å, ß = 107.010 (3)°, V = 635.60 (3) Å3 and tuscanite P21/a, a = 23.9846 (9), b = 5.09694 (15), c = 10.8504 (4) Å, ß = 107.032 (4)°, V = 1268.26 (8) Å3. The obtained crystal chemical formulae (Z = 2 for both minerals) are [(H3O)0.48(H2O)0.24K0.28](Ca2.48K0.21Na0.21Sr0.06Mg0.04)(Si2.86Al2.14O11)[(SO4)0.70(PO4)0.20](CO3)0.10 for latiumite and [(H3O)0.96(H2O)0.58K0.46](Ca4.94K0.44Na0.45Sr0.09Mg0.08)(Si5.80Al4.20O22)[(SO4)1.53(PO4)0.33](CO3)0.14 for tuscanite. These minerals are dimorphous. Both latiumite and tuscanite show distinct affinity for the PO43- anion. Hydrolytic alteration of these minerals results in partial leaching of potassium accompanied by protonation and hydration which is an important precondition for the existence of ion/proton conductivity of related materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...