Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Brain ; 14(1): 162, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34749771

ABSTRACT

Molecular and cellular mechanisms underlying the role of the prelimbic cortex in contextual fear memory remain elusive. Here we examined the kinesin family of molecular motor proteins (KIFs) in the prelimbic cortex for their role in mediating contextual fear, a form of associative memory. KIFs function as critical mediators of synaptic transmission and plasticity by their ability to modulate microtubule function and transport of gene products. However, the regulation and function of KIFs in the prelimbic cortex insofar as mediating memory consolidation is not known. We find that within one hour of contextual fear conditioning, the expression of KIF3B is upregulated in the prelimbic but not the infralimbic cortex. Importantly, lentiviral-mediated knockdown of KIF3B in the prelimbic cortex produces deficits in consolidation while reducing freezing behavior during extinction of contextual fear. We also find that the depletion of KIF3B increases spine density within prelimbic neurons. Taken together, these results illuminate a key role for KIF3B in the prelimbic cortex as far as mediating contextual fear memory.


Subject(s)
Extinction, Psychological , Memory , Cerebral Cortex , Extinction, Psychological/physiology , Fear/physiology , Memory/physiology , Prefrontal Cortex/metabolism
2.
Cell Rep ; 36(2): 109369, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260917

ABSTRACT

Synaptic structural plasticity, key to long-term memory storage, requires translation of localized RNAs delivered by long-distance transport from the neuronal cell body. Mechanisms and regulation of this system remain elusive. Here, we explore the roles of KIF5C and KIF3A, two members of kinesin superfamily of molecular motors (Kifs), and find that loss of function of either kinesin decreases dendritic arborization and spine density whereas gain of function of KIF5C enhances it. KIF5C function is a rate-determining component of local translation and is associated with ∼650 RNAs, including EIF3G, a regulator of translation initiation, and plasticity-associated RNAs. Loss of function of KIF5C in dorsal hippocampal CA1 neurons constrains both spatial and contextual fear memory, whereas gain of function specifically enhances spatial memory and extinction of contextual fear. KIF5C-mediated long-distance transport of local translation substrates proves a key mechanism underlying structural plasticity and memory.


Subject(s)
Kinesins/metabolism , Memory, Long-Term , Molecular Motor Proteins/metabolism , Neuronal Plasticity , Protein Biosynthesis , Animals , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dendritic Spines/metabolism , Excitatory Postsynaptic Potentials , Fear , Female , Gain of Function Mutation , HEK293 Cells , Hippocampus/metabolism , Humans , Learning , Male , Memory Disorders/metabolism , Memory Disorders/pathology , Memory Disorders/physiopathology , Mice, Inbred C57BL , RNA Transport , Signal Transduction , Synapses/metabolism , Synaptic Transmission
3.
Cell Rep ; 32(2): 107899, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32668253

ABSTRACT

The prefrontal cortex and amygdala are anatomical substrates linked to both social information and emotional valence processing, but it is not known whether sub-circuits in the medial prefrontal cortex (mPFC) that project to the basolateral amygdala (BLA) are recruited and functionally contribute to social approach-avoidance behavior. Using retrograde labeling of mPFC projections to the BLA, we find that BLA-projecting neurons in the infralimbic cortex (IL) are preferentially activated in response to a social cue as compared with BLA-projecting neurons in the prelimbic cortex (PL). Chemogenetic interrogation of these sub-circuits shows that activation of PL-BLA or inhibition of IL-BLA circuits impairs social behavior. Sustained closed-loop optogenetic activation of PL-BLA circuitry induces social impairment, corresponding to a negative emotional state as revealed by real-time place preference behavioral avoidance. Reactivation of foot shock-responsive PL-BLA circuitry impairs social behavior. Altogether, these data suggest a circuit-level mechanism by which valence-encoding mPFC-BLA sub-circuits shape social approach-avoidance behavior.


Subject(s)
Amygdala/physiology , Neural Pathways/physiology , Prefrontal Cortex/physiology , Social Behavior , Animals , Mice, Inbred C57BL , Neurons/physiology , Optogenetics , Time Factors
4.
Transl Psychiatry ; 9(1): 329, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31804455

ABSTRACT

Haploinsufficiency for PTEN is a cause of autism spectrum disorder and brain overgrowth; however, it is not known if PTEN mutations disrupt scaling across brain areas during development. To address this question, we used magnetic resonance imaging to analyze brains of male Pten haploinsufficient (Pten+/-) mice and wild-type littermates during early postnatal development and adulthood. Adult Pten+/- mice display a consistent pattern of abnormal scaling across brain areas, with white matter (WM) areas being particularly affected. This regional and WM enlargement recapitulates structural abnormalities found in individuals with PTEN haploinsufficiency and autism. Early postnatal Pten+/- mice do not display the same pattern, instead exhibiting greater variability across mice and brain regions than controls. This suggests that Pten haploinsufficiency may desynchronize growth across brain regions during early development before stabilizing by maturity. Pten+/- cortical cultures display increased proliferation of glial cell populations, indicating a potential substrate of WM enlargement, and provide a platform for testing candidate therapeutics. Pten haploinsufficiency dysregulates coordinated growth across brain regions during development. This results in abnormally scaled brain areas and associated behavioral deficits, potentially explaining the relationship between PTEN mutations and neurodevelopmental disorders.


Subject(s)
Cerebral Cortex/growth & development , PTEN Phosphohydrolase/physiology , White Matter/growth & development , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Cells, Cultured , Cerebral Cortex/diagnostic imaging , Disease Models, Animal , Haploinsufficiency , Humans , Magnetic Resonance Imaging , Male , Mice , Mice, 129 Strain , PTEN Phosphohydrolase/genetics , White Matter/diagnostic imaging
6.
Elife ; 72018 03 26.
Article in English | MEDLINE | ID: mdl-29578407

ABSTRACT

The cholinergic interneurons (CINs) of the striatum are crucial for normal motor and behavioral functions of the basal ganglia. Striatal CINs exhibit tonic firing punctuated by distinct pauses. Pauses occur in response to motivationally significant events, but their function is unknown. Here we investigated the effects of pauses in CIN firing on spiny projection neurons (SPNs) - the output neurons of the striatum - using in vivo whole cell and juxtacellular recordings in mice. We found that optogenetically-induced pauses in CIN firing inhibited subthreshold membrane potential activity and decreased firing of SPNs. During pauses, SPN membrane potential fluctuations became more hyperpolarized and UP state durations became shorter. In addition, short-term plasticity of corticostriatal inputs was decreased during pauses. Our results indicate that, in vivo, the net effect of the pause in CIN firing on SPNs activity is inhibition and provide a novel mechanism for cholinergic control of striatal output.


Subject(s)
Action Potentials , Cholinergic Neurons/physiology , Corpus Striatum/physiology , Interneurons/physiology , Neural Inhibition , Animals , Mice , Optogenetics
7.
Eur J Neurosci ; 47(10): 1194-1205, 2018 05.
Article in English | MEDLINE | ID: mdl-29359362

ABSTRACT

Behavioural flexibility is crucial for adaptive behaviour, and recent evidence suggests that cholinergic interneurons of the striatum play a distinct role. Previous studies of cholinergic function have focused on strategy switching by the dorsomedial or ventral striatum. We here investigated whether cholinergic interneurons in the dorsolateral striatum play a similar role at the level of switching of habitual responses. Because the dorsolateral striatum is particularly involved in habitual responding, we developed a habit substitution task that involved switching habitual lever-press responses to one side to another. We first measured the effect of cholinergic activation in the dorsolateral striatum on this task. Chemogenetic activation of cholinergic interneurons caused an increase in the response rate for the substituted response that was significantly greater than the increase normally seen in control animals. The increase was due to burst-like responses with shorter inter-press intervals. However, there was no effect on inhibiting the old habit, or on habitual responding that did not require a switch. There was also no effect on lever-press performance and its reversal before lever-press responses became habitual. Conversely, neurochemically specific ablation of cholinergic interneurons did not significantly change habitual responding or response substitution. Thus, activation -but not ablation -of cholinergic interneurons in the dorsolateral striatum modulates expression of a new habit when an old habit is replaced by a new one. Together with previous work, this suggests that striatal cholinergic interneurons facilitate behavioural flexibility in both dorsolateral striatum in addition to dorsomedial and ventral striatum.


Subject(s)
Behavior, Animal/physiology , Cholinergic Neurons/physiology , Habits , Interneurons/physiology , Learning/physiology , Neostriatum/physiology , Psychomotor Performance/physiology , Animals , Rats , Rats, Long-Evans , Rats, Transgenic
8.
J Vis Exp ; (119)2017 01 23.
Article in English | MEDLINE | ID: mdl-28191878

ABSTRACT

Behavioral flexibility is crucial for survival in changing environments. Broadly defined, behavioral flexibility requires a shift of behavioral strategy based on a change in governing rules. We describe a strategy set-shifting task that requires an attentional shift from one stimulus dimension to another. The paradigm is often used for testing cognitive flexibility in primates. However, the rodent version has not been as extensively developed. We have recently extended an established set-shifting task in the rat1 by requiring attention to different stimuli according to context. All the experimental conditions required animals to choose either a left or right lever. Initially, all animals had to choose on the basis of the location of the lever. Subsequently, a change in the rule occurred, which required a shift in set from location-based rule to a rule in which the correct lever was indicated by a light cue. We compared performance on three different versions of the task, in which the light stimulus was either novel, previously relevant, or previously irrelevant. We found that specific neurochemical lesions selectively impaired the ability to make particular types of set shift as measured by the performance on the different versions of the task.


Subject(s)
Attention , Behavior, Animal , Animals , Male , Rats , Rats, Long-Evans
9.
J Neurosci ; 35(25): 9424-31, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26109665

ABSTRACT

The ability to change strategies in different contexts is a form of behavioral flexibility that is crucial for adaptive behavior. The striatum has been shown to contribute to certain forms of behavioral flexibility such as reversal learning. Here we report on the contribution of striatal cholinergic interneurons-a key element in the striatal neuronal circuit-to strategy set-shifting in which an attentional shift from one stimulus dimension to another is required. We made lesions of rat cholinergic interneurons in dorsomedial or ventral striatum using a specific immunotoxin and investigated the effects on set-shifting paradigms and on reversal learning. In shifting to a set that required attention to a previously irrelevant cue, lesions of dorsomedial striatum significantly increased the number of perseverative errors. In this condition, the number of never-reinforced errors was significantly decreased in both types of lesions. When shifting to a set that required attention to a novel cue, rats with ventral striatum lesions made more perseverative errors. Neither lesion impaired learning of the initial response strategy nor a subsequent switch to a new strategy when response choice was indicated by a previously relevant cue. Reversal learning was not affected. These results suggest that in set-shifting the striatal cholinergic interneurons play a fundamental role, which is dissociable between dorsomedial and ventral striatum depending on behavioral context. We propose a common mechanism in which cholinergic interneurons inhibit neurons representing the old strategy and enhance plasticity underlying exploration of a new rule.


Subject(s)
Cholinergic Neurons/physiology , Corpus Striatum/physiology , Interneurons/physiology , Learning/physiology , Neuronal Plasticity/physiology , Animals , Attention/physiology , Cues , Male , Rats , Rats, Long-Evans
10.
Article in English | MEDLINE | ID: mdl-24567705

ABSTRACT

Golgi cells (GoCs) are specialized interneurons that provide inhibitory input to granule cells in the cerebellar cortex. GoCs are pacemaker neurons that spontaneously fire action potentials, triggering spontaneous inhibitory postsynaptic currents in granule cells and also contributing to the generation tonic GABAA receptor-mediated currents in granule cells. In turn, granule cell axons provide feedback glutamatergic input to GoCs. It has been shown that high frequency stimulation of granule cell axons induces a transient pause in GoC firing in a type 2-metabotropic glutamate receptor (mGluR2)-dependent manner. Here, we investigated the effect ethanol on the pause of GoC firing induced by high frequency stimulation of granule cell axons. GoC electrophysiological recordings were performed in parasagittal cerebellar vermis slices from postnatal day 23 to 26 rats. Loose-patch cell-attached recordings revealed that ethanol (40 mM) reversibly decreases the pause duration. An antagonist of mGluR2 reduced the pause duration but did not affect the effect of ethanol. Whole-cell voltage-clamp recordings showed that currents evoked by an mGluR2 agonist were not significantly affected by ethanol. Perforated-patch experiments in which hyperpolarizing and depolarizing currents were injected into GoCs demonstrated that there is an inverse relationship between spontaneous firing and pause duration. Slight inhibition of the Na(+)/K(+) pump mimicked the effect of ethanol on pause duration. In conclusion, ethanol reduces the granule cell axon-mediated feedback mechanism by reducing the input responsiveness of GoCs. This would result in a transient increase of GABAA receptor-mediated inhibition of granule cells, limiting information flow at the input stage of the cerebellar cortex.

SELECTION OF CITATIONS
SEARCH DETAIL
...