Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
BMC Res Notes ; 9: 111, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26888663

ABSTRACT

BACKGROUND: The cost per patient of next generation sequencing for detection of rare mutations may be significantly reduced using pooled experiments. Recently, some techniques have been proposed for the planning of pooled experiments and for the optimal allocation of patients into pools. However, the lack of a user friendly resource for planning the design of pooled experiments forces the scientists to do frequent, complex and long computations. RESULTS: OPENDoRM is a powerful collection of novel mathematical algorithms usable via an intuitive graphical user interface. It enables researchers to speed up the planning of their routine experiments, as well as, to support scientists without specific bioinformatics expertises. Users can automatically carry out analysis in terms of costs associated with the optimal allocation of patients in pools. They are also able to choose between three distinct pooling mathematical methods, each of which also suggests the optimal configuration for the submitted experiment. Importantly, in order to keep track of the performed experiments, users can save and export the results of their experiments in standard tabular and charts contents. CONCLUSION: OPENDoRM is a freely available web-oriented application for the planning of pooled NGS experiments, available at: http://www-labgtp.na.icar.cnr.it/OPENDoRM. Its easy and intuitive graphical user interface enables researchers to plan theirs experiments using novel algorithms, and to interactively visualize the results.


Subject(s)
Computational Biology/statistics & numerical data , DNA/analysis , High-Throughput Nucleotide Sequencing/statistics & numerical data , Mutation , User-Computer Interface , Algorithms , Computational Biology/methods , DNA/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Internet
2.
PLoS One ; 10(11): e0140268, 2015.
Article in English | MEDLINE | ID: mdl-26581084

ABSTRACT

RNA-seq is a new tool to measure RNA transcript counts, using high-throughput sequencing at an extraordinary accuracy. It provides quantitative means to explore the transcriptome of an organism of interest. However, interpreting this extremely large data into biological knowledge is a problem, and biologist-friendly tools are lacking. In our lab, we developed Transcriptator, a web application based on a computational Python pipeline with a user-friendly Java interface. This pipeline uses the web services available for BLAST (Basis Local Search Alignment Tool), QuickGO and DAVID (Database for Annotation, Visualization and Integrated Discovery) tools. It offers a report on statistical analysis of functional and Gene Ontology (GO) annotation's enrichment. It helps users to identify enriched biological themes, particularly GO terms, pathways, domains, gene/proteins features and protein-protein interactions related informations. It clusters the transcripts based on functional annotations and generates a tabular report for functional and gene ontology annotations for each submitted transcript to the web server. The implementation of QuickGo web-services in our pipeline enable the users to carry out GO-Slim analysis, whereas the integration of PORTRAIT (Prediction of transcriptomic non coding RNA (ncRNA) by ab initio methods) helps to identify the non coding RNAs and their regulatory role in transcriptome. In summary, Transcriptator is a useful software for both NGS and array data. It helps the users to characterize the de-novo assembled reads, obtained from NGS experiments for non-referenced organisms, while it also performs the functional enrichment analysis of differentially expressed transcripts/genes for both RNA-seq and micro-array experiments. It generates easy to read tables and interactive charts for better understanding of the data. The pipeline is modular in nature, and provides an opportunity to add new plugins in the future. Web application is freely available at: http://www-labgtp.na.icar.cnr.it/Transcriptator.


Subject(s)
Molecular Sequence Annotation , RNA, Untranslated/genetics , Transcriptome , User-Computer Interface , Animals , Gene Ontology , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Humans , Internet , RNA, Untranslated/chemistry , Sequence Analysis, RNA
3.
ScientificWorldJournal ; 2012: 648427, 2012.
Article in English | MEDLINE | ID: mdl-22649301

ABSTRACT

The genetic variability of Pantesco and other two Sicilian autochthonous donkey breeds (Ragusano and Grigio Siciliano) was assessed using a set of 14 microsatellites. The main goals were to describe the current differentiation among the breeds and to provide genetic information useful to safeguard the Pantesco breed as well as to manage Ragusano and Grigio Siciliano. In the whole sample, that included 108 donkeys representative of the three populations, a total of 85 alleles were detected. The mean number of alleles was lower in Pantesco (3.7), than in Grigio Siciliano and Ragusano (4.4 and 5.9, resp.). The three breeds showed a quite low level of gene diversity (He) ranging from 0.471 in Pantesco to 0.589 in Grigio. The overall genetic differentiation index (Fst) was quite high; more than 10% of the diversity was found among breeds. Reynolds' (D(R)) genetic distances, correspondence, and population structure analysis reproduced the same picture, revealing that, (a) Pantesco breed is the most differentiated in the context of the Sicilian indigenous breeds, (b) within Ragusano breed, two well-defined subgroups were observed. This information is worth of further investigation in order to provide suitable data for conservation strategies.


Subject(s)
Equidae/genetics , Genetic Variation , Alleles , Animals , Female , Male , Microsatellite Repeats , Polymorphism, Genetic , Sicily
4.
J Hered ; 102(6): 753-8, 2011.
Article in English | MEDLINE | ID: mdl-21914666

ABSTRACT

Genetic diversity and relationship among 3 Sicilian horse breeds were investigated using 16 microsatellite markers and a 397-bp length mitochondrial D-loop sequence. The analysis of autosomal DNA was performed on 191 horses (80 Siciliano [SIC], 61 Sanfratellano [SAN], and 50 Sicilian Oriental Purebred [SOP]). SIC and SAN breeds were notably higher in genetic variability than the SOP. Genetic distances and cluster analysis showed a close relationship between SIC and SAN breeds, as expected according to the breeds' history. Sequencing of hypervariable mitochondrial DNA region was performed on a subset of 60 mares (20 for each breed). Overall, 20 haplotypes with 31 polymorphic sites were identified: A higher haplotype diversity was detected in SIC and SAN breeds, with 13 and 11 haplotypes respectively, whereas only one haplotype was found in SOP. These were compared with 118 sequences from GenBank. BLAST showed that 17 of the 20 haplotypes had been reported previously in other breeds. One haplotype, found in SIC, traces back to a Bronze Age archaeological site (Inner Mongolia). The 3 Sicilian breeds are now rare, and 2 of them are officially endangered. Our results represent a valuable tool for management strategies as well as for conservation purposes.


Subject(s)
DNA Fingerprinting/methods , DNA, Mitochondrial/genetics , Horses/genetics , Microsatellite Repeats , Animals , Breeding , Cluster Analysis , Endangered Species , Female , Genetic Markers , Genetic Variation , Haplotypes , Male , Mitochondria/genetics , Phylogeny , Phylogeography , Polymorphism, Genetic , Sequence Analysis, DNA , Sicily
5.
Genet Mol Biol ; 33(4): 650-6, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21637573

ABSTRACT

Nero Siciliano is an autochthonous pig breed that is reared mainly in semi-extensive systems in northeastern Sicily. Despite its economic importance and well-appreciated meat products, this breed is currently endangered. Consequently, an analysis of intra-breed variability is a fundamental step in preserving this genetic resource and its breeding system. In this work, we used 25 microsatellite markers to examine the genetic composition of 147 unrelated Nero Siciliano pigs. The total number of alleles detected (249, 9.96 per locus) and the expected heterozygosity (0.708) indicated that this breed had a high level of genetic variability. Bayesian cluster analysis showed that the most likely number of groups into which the sample could be partitioned was nine. Based on the proportion of each individuals genome derived from ancestry, pigs with at least 70% of their genome belonging to one cluster were assigned to that cluster. The cluster size ranged from 7 to 17 (n = 108). Genetic variability in this sub-population was slightly lower than in the whole sample, genetic differentiation among clusters was moderate (F(ST) 0.125) and the F(IS) value was 0.011. NeighborNet and correspondence analysis revealed two clusters as the most divergent. Molecular coancestry analysis confirmed the good within-breed variability and highlighted the clusters that retained the highest genetic diversity.

6.
Genet. mol. biol ; 33(4): 650-656, 2010. graf, tab
Article in English | LILACS | ID: lil-571527

ABSTRACT

Nero Siciliano is an autochthonous pig breed that is reared mainly in semi-extensive systems in northeastern Sicily. Despite its economic importance and well-appreciated meat products, this breed is currently endangered. Consequently, an analysis of intra-breed variability is a fundamental step in preserving this genetic resource and its breeding system. In this work, we used 25 microsatellite markers to examine the genetic composition of 147 unrelated Nero Siciliano pigs. The total number of alleles detected (249, 9.96 per locus) and the expected heterozygosity (0.708) indicated that this breed had a high level of genetic variability. Bayesian cluster analysis showed that the most likely number of groups into which the sample could be partitioned was nine. Based on the proportion of each individuals genome derived from ancestry, pigs with at least 70 percent of their genome belonging to one cluster were assigned to that cluster. The cluster size ranged from 7 to 17 (n = 108). Genetic variability in this sub-population was slightly lower than in the whole sample, genetic differentiation among clusters was moderate (F ST 0.125) and the F IS value was 0.011. NeighborNet and correspondence analysis revealed two clusters as the most divergent. Molecular coancestry analysis confirmed the good within-breed variability and highlighted the clusters that retained the highest genetic diversity.

SELECTION OF CITATIONS
SEARCH DETAIL
...