Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 180: 113750, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35597000

ABSTRACT

The brown meagre (Sciaena umbra) is a vulnerable vocal fish species that may be affected by boat noise. The breeding site distribution along the anthropized Venice sea inlets was investigated, by using the species' chorusing activity as a proxy of spawning. Passive acoustic campaigns were repeated at 40 listening points distributed within the three inlets during three-time windows in both summer 2019 and 2020. The role of temporal, morphological, and hydrodynamic variables explaining the observed distribution patterns was evaluated using a GLM approach, considering also human-induced pressures among the candidate predictors. The GLM analysis indicates a higher probability of recording S. umbra chorus after sunset in deeper areas of the inlets, characterized by low water current, while the underwater noise overlapping the species' hearing range and boat abundance did not play any role. This suggests that the species' breeding site choice in the inlets was not influences by boat-induced pressure.


Subject(s)
Perciformes , Ships , Acoustics , Animals , Fishes , Noise
2.
Glob Chang Biol ; 26(2): 786-797, 2020 02.
Article in English | MEDLINE | ID: mdl-31495042

ABSTRACT

Implementing the Ecosystem Approach in marine ecosystems is moving from preliminary steps-dedicated to defining the optimal features for indicators and developing efficient indicator frameworks-towards an operational phase where multisector marine management decisions are executed using this information. Within this operational context, emergent ecosystem properties are becoming quite promising as they have been demonstrated to be globally widespread and repeatable, and to be quite effective in detecting significant state variations of complex systems. Biomass accumulation across TLs (CumB-TL) combines two important emergent properties of an ecosystem (energy flow, in terms of transfer efficiency, and storage, expressed as biomass), both amenable to detecting rapid ecosystem change. However, for further application, it is crucial to understand which types of drivers an indicator is sensitive to and how robust it is in relation to modifications of the external conditions and/or the system state. Here we address some outstanding questions of these CumB-TL curves related to their sensitivity to various drivers by carrying out a global scale assessment (using data from 62 LMEs) over six decades (1950-2010). We confirm the consistency of the S-pattern across all the LMEs, independent from latitude, ecosystem, environmental conditions, and stress level. The dynamics of the curve shape showed a tendency to stretch (i.e. decrease of steepness), in the presence of external disturbance and conversely to increase in steepness and shift towards higher TL in the case of recovery from stressed conditions. Our results suggest the presence of three main types of ecosystem dynamics, those showing an almost continuous increase in ecological state over time, those showing a continuous decrease in ecological state over time, and finally those showing a mixed behaviour flipping between recovering and degrading phases. These robust patterns suggest that the CumB-TL curve approach has some useful properties for use in further advancing the implementation of the Ecosystem Approach, allowing us to detect the state of a given marine ecosystem based on the dynamics of its curve shape, by using readily available time series data. The value of being able to identify conditions that might require management actions is quite high and, in many respects, represents the main objective in the context of an Ecosystem Approach, with large applications for detecting and responding to global changes in marine ecosystems.


Subject(s)
Ecosystem , Biomass
3.
Ecol Evol ; 8(9): 4422-4430, 2018 May.
Article in English | MEDLINE | ID: mdl-29760884

ABSTRACT

Display of bright and striking color patterns is a widespread way of communication in many animal species. Carotenoid-based coloration accounts for most of the bright yellow, orange, and red displays in invertebrates, fish, amphibians, reptiles, and birds, being widely considered a signal of individual health. This type of coloration is under the influence of several factors, such as sexual selection, predator pressure, pigment availability, and light transmission. Fish offer numerous examples of visual communication by means of color patterns. We used a small cyprinodontid fish, Aphanius fasciatus (Valenciennes, 1821), as a model species to assess habitat constraints on the color display in male caudal fin. Populations from natural and open/closed artificial habitats were tested for differences in the pigmentation of caudal fins. The most important factors explaining the intensity of coloration were the habitat type and the chlorophyll concentration in the sediment, followed by water turbidity; yellow fins were observed in natural habitats with low chlorophyll concentration and high water turbidity, while orange fins occurred in artificial habitats with high chlorophyll concentration and low turbidity. Furthermore, A. fasciatus in artificial habitats showed a higher somatic and a lower reproductive allotment with respect to natural habitats, according to the existing literature on the species. Furthermore, in closed artificial habitats, where the most intense reddish coloration of caudal fins was observed, a trade-off between somatic growth and the coloration intensity of a carotenoid-based sexual ornament has been observed; in these populations, intensity of caudal fin coloration was negatively related to the somatic allotment. Results of this study suggested how both the pigmentation of male's caudal fin and the life history strategies of the species are constrained by habitat characteristics.

4.
Adv Exp Med Biol ; 875: 83-90, 2016.
Article in English | MEDLINE | ID: mdl-26610947

ABSTRACT

Three passive listening surveys have been carried out in two of the three Venice lagoon tide inlets and inside the Venice island. The spectral content and the intensity level of the underwater noise as well as the presence or absence of Sciaena umbra and the distribution of its different sound patterns have been investigated in all the recording sites. The passive listening proved to be successful in detecting S. umbra drumming sounds in both Venice lagoon tide inlets. Our results indicate that the spectral content and the level of underwater noise pollution in the Venice lagoon could affect fish acoustic communication.


Subject(s)
Environmental Monitoring , Fishes/physiology , Noise , Water , Acoustics , Animals , Geography , Italy , Tape Recording
5.
PLoS One ; 10(6): e0128363, 2015.
Article in English | MEDLINE | ID: mdl-26114958

ABSTRACT

Collisions between aircraft and birds, birdstrikes, pose a serious threat to aviation safety. The occurrence of these events is influenced by land-uses in the surroundings of airports. Airports located in the same region might have different trends for birdstrike risk, due to differences in the surrounding habitats. Here we developed a quantitative tool that assesses the risk of birdstrike based on the habitats within a 13-km buffer from the airport. For this purpose, we developed Generalized Linear Models (GLMs) with binomial distribution to estimate the contribution of habitats to wildlife use of the study area, depending on season. These GLMs predictions were combined to the flight altitude of birds within the 13-km buffer, the airport traffic pattern and the severity indices associated with impacts. Our approach was developed at Venice Marco Polo International airport (VCE), located in northeast Italy and then tested at Treviso Antonio Canova International airport (TSF), which is 20 km inland. Results from the two airports revealed that both the surrounding habitats and the season had a significant influence to the pattern of risk. With regard to VCE, agricultural fields, wetlands and urban areas contributed most to the presence of birds in the study area. Furthermore, the key role of distance of land-uses from the airport on the probability of presence of birds was highlighted. The reliability of developed risk index was demonstrated since at VCE it was significantly correlated with bird strike rate. This study emphasizes the importance of the territory near airports and the wildlife use of its habitats, as factors in need of consideration for birdstrike risk assessment procedures. Information on the contribution of habitats in attracting birds, depending on season, can be used by airport managers and local authorities to plan specific interventions in the study area in order to lower the risk.


Subject(s)
Accidents, Aviation , Aircraft , Birds , Natural Resources , Risk Assessment , Airports , Animals , Humans , Italy , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...