Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Vaccine ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871572

ABSTRACT

INTRODUCTION: Argentina authorized COVID-19 vaccination for adolescents 12 years and older in August 2021, and then for children three years and older in October 2021. Children aged 6 months-2 years received a two-dose regimen beginning July 2022. OBJECTIVE: This study aims to analyze the impact of COVID-19 vaccination among children aged 0-17, considering vaccination status and mortality for the 2020-2022 period. METHODS: We conducted a population-level analysis examining all-cause mortality, COVID-19 cases, deaths, and vaccination records. We compared outcomes with child mortality for diseases for which vaccination is compulsory, before and after each vaccine rollout. RESULTS: A decrease in COVID-19-related deaths was observed in 2022 for pediatric age groups (3-11 and 12-17) with relatively higher vaccination coverage. However, no decrease was observed for the 0-2 year old age group, which had the longest delay in access to immunization and lowest vaccination coverage. When compared to unvaccinated populations in 2022, we observe an 8-15-fold reduction in cumulative death rates for pediatric populations vaccinated with 1 or more doses, and a 16-18-fold reduction for those vaccinated with 2 or more doses. Historical analysis shows that for diseases for which vaccination is now compulsory in many countries, pre-vaccine-rollout mortality was lower than COVID-19 deaths during 2020-2022. CONCLUSIONS AND RELEVANCE: SARS-CoV-2 immunization was associated with reduced COVID-19 deaths for children and adolescents in Argentina. Our findings suggest that greater efforts should be undertaken to ensure wider COVID-19 vaccine coverage in children and adolescents, especially infants.

2.
J Xenobiot ; 14(1): 308-319, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38535494

ABSTRACT

Heme enzyme dysfunction causes a group of diseases called porphyrias. Particularly, a decrease in porphobilinogen deaminase, involved in the third step of heme biosynthesis, leads to acute intermittent porphyria (AIP). Considering our previous works demonstrating the multiplicity of brain metabolisms affected by porphyrinogenic agents, this study aimed to elucidate whether they cause any alteration on the mitochondrial respiratory chain. The activities of respiratory chain complexes (I to IV) were measured in encephalon mitochondria of CF1 male mice receiving volatile anesthetics: isoflurane (2 mL/kg) and sevoflurane (1.5 mL/kg), ethanol (30%), allylisopropylacetamide (AIA) (350 mg/kg), and barbital (167 mg/kg). Moreover, they were compared versus animals with pathological levels of 5-aminolevulinic acid (ALA, 40 mg/kg). Complex I-III activity was induced by isoflurane and decreased by AIA, ethanol, and ALA. Complex II-III activity was increased by sevoflurane and decreased by isoflurane and AIA. Complex II activity was increased by sevoflurane and barbital and decreased by AIA, ethanol, and ALA. Complex IV activity was increased by barbital and ALA and decreased by sevoflurane. The damage to the respiratory chain by ALA could be reflecting the pathophysiological condition of patients with AIP. Better understanding the broad effect of porphyrinogenic drugs and the mechanisms acting on the onset of AIP is vital in translational medicine.

3.
Methods Protoc ; 6(3)2023 May 26.
Article in English | MEDLINE | ID: mdl-37367997

ABSTRACT

The Multidrug Resistance protein (ABCB1, MDR1) is involved in the transport of xenobiotics and antiretroviral drugs. Some variants of the ABCB1 gene are of clinical importance; among them, exon 12 (c.1236C>T, rs1128503), 21 (c.2677G>T/A, rs2032582), and 26 (c.3435C>T, rs1045642) have a high incidence in Caucasians. Several protocols have been used for genotyping the exon 21 variants, such as allele-specific PCR-RFLP using adapted primer to generate a digestion site for several enzymes and automatic sequencing to detect the SNVs, TaqMan Allele Discrimination assay and High-Resolution Melter analysis (HRMA). The aim was to describe a new approach to genotype the three variants c.2677G>T/A for the exon 21 doing only one PCR with the corresponding primers and the digestion of the PCR product with two restriction enzymes: BrsI to identify A allele and BseYI to differentiate between G or T. An improvement of this methodology was also described. The proposal technique here described is demonstrated to be very efficient, easy, fast, reproducible, and cost-effective.

4.
Biomed Rep ; 14(2): 22, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33335728

ABSTRACT

In Argentina, porphyria cutanea tarda (PCT) is strongly associated with infection with human immunodeficiency virus (HIV); however, whether the onset of this disease is associated with HIV infection and/or the antiretroviral therapy has not been determined. The ABCB1 gene variants c.1236C>T, c.2677G>T/A and c.3435C>T affect drug efflux. The GSTT1 null, GSTM1 null and GSTP1 (c.313A>G) gene variants alter Glutathione S-transferase (GST) activity, modifying the levels of xenobiotics. The aim of the present study was to evaluate the role of genetic variants in initiation of PCT and to analyze the genetic basis of the PCT-HIV association. Control individuals, and HIV, PCT and PCT-HIV patients were recruited, PCR-restriction fragment length polymorphism was used to genotype the ABCB1 and GSTP1 variants, and multiplex PCR was used to study the GSTM1 and GSTT1 variants. The high frequency of c.3435C>T (PCT and PCT-HIV) and c.1236C>T (PCT) suggested that the onset of PCT were not specifically related to HIV infection or antiretroviral therapy for these variants. c.2677G>T/A frequencies in the PCT-HIV patients were higher compared with the other groups, suggesting that a mechanism involving antiretroviral therapy served a role in this association. PCT-HIV patients also had a high frequency of GSTT1 null and low frequency for GSTM1 null variants; thus, the genetic basis for PCT onset may involve a combination between the absence of GSTT1 and the presence of GSTM1. In conclusion, genes encoding for proteins involved in the flow and metabolism of xenobiotics may influence the PCT-HIV association. The present study is the first to investigate the possible role of GST and ABCB1 gene variants in the triggering of PCT in HIV-infected individuals, to the best of our knowledge, and may provide novel insights into the molecular basis of the association between PCT and HIV.

5.
Biochim Biophys Acta Gen Subj ; 1862(6): 1296-1305, 2018 06.
Article in English | MEDLINE | ID: mdl-29476795

ABSTRACT

BACKGROUND: Acute Intermittent Porphyria (AIP) is an inherited disease produced by a deficiency of Porphobilinogen deaminase (PBG-D). The aim of this work was to evaluate the effects of Isoflurane and Sevoflurane on heme metabolism in a mouse genetic model of AIP to further support our previous proposal for avoiding their use in porphyric patients. A comparative study was performed administering the porphyrinogenic drugs allylisopropylacetamide (AIA), barbital and ethanol, and also between sex and mutation using AIP (PBG-D activity 70% reduced) and T1 (PBG-D activity 50% diminished) mice. METHODS: The activities of 5-Aminolevulinic synthetase (ALA-S), PBG-D, Heme oxygenase (HO) and CYP2E1; the expression of ALA-S and the levels of 5-aminolevulinic acid (ALA) were measured in different tissues of mice treated with the drugs mentioned. RESULTS: Isoflurane increased liver, kidney and brain ALA-S activity of AIP females but only affected kidney AIP males. Sevoflurane induced ALA-S activity in kidney and brain of female AIP group. PBG-D activity was further reduced by Isoflurane in liver male T1; in AIP male mice activity remained in its low basal levels. Ethanol and barbital also caused biochemical alterations. Only AIA triggered neurological signs similar to those observed during human acute attacks in male AIP being the symptoms less pronounced in females although ALA-S induction was greater. Heme degradation was affected. DISCUSSION: Biochemical alterations caused by the porphyrinogenic drugs assayed were different in male and female mice and also between T1 and AIP being more affected the females of AIP group. GENERAL SIGNIFICANCE: This is the first study using volatile anaesthetics in an AIP genetic model confirming Isoflurane and Sevoflurane porphyrinogenicity.


Subject(s)
Anesthetics/pharmacology , Heme/metabolism , Hydroxymethylbilane Synthase/physiology , Models, Genetic , Porphobilinogen/pharmacology , Porphyria, Acute Intermittent/drug therapy , Volatile Organic Compounds/pharmacokinetics , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Porphobilinogen/chemistry , Porphyria, Acute Intermittent/genetics , Porphyria, Acute Intermittent/metabolism , Porphyria, Acute Intermittent/pathology
6.
Acta bioquím. clín. latinoam ; 50(4): 547-573, dic. 2016. ilus, tab
Article in Spanish | LILACS | ID: biblio-837630

ABSTRACT

Las porfirias son enfermedades metabólicas consecuencia de fallas en la biosíntesis del hemo, caracterizadas por un patrón específico de acumulación y excreción de intermediarios, responsables de su patofisiología. En las porfirias agudas el exceso de ácido d-aminolevúlico (ALA) produce una sintomatología neuroabdominal asociada al daño oxidativo por formación de especies reactivas de oxígeno (ROS), originadas por autooxidaxión del ALA. En las cutáneas, la sintomatología es producto de la acumulación de porfirinas, que como el ALA, inducen la formación de ROS. Su desencadenamiento se precipita por factores endógenos (ayuno, estrés, hormonas) y/o exógenos (fármacos), en particular algunos anestésicos. Se presenta una revisión de los estudios bioquímicos y genéticos en pacientes con diferentes porfirias obtenidos en el Centro de Investigaciones de Porfirias y Porfirinas (CIPYP), durante los últimos 38 años, que permitieron ampliar el conocimiento sobre las bases moleculares sobre estas patologías. Se describen los logros resultantes del empleo de modelos experimentales de porfiria, inducida farmacológica o genéticamente, que contribuyeron a la clasificación de algunas drogas como prohibidas para pacientes con porfiria. Finalmente, las porfirinas generadoras de ROS, y por ende inductoras de muerte celular, tienen su aplicación para combatir infecciones por organismos hemo-deficientes como Trypanosoma cruzi y también para ser utilizadas como fotosensibilizadores en la terapia fotodinámica (TFD).


Porphyrias comprise a group of metabolic disorders of the heme biosynthesis pathway resulting in a specific accumulation and excretion of intermediates which are responsible for their pathophysiology. Acute porphyrias are characterized by acute neurovisceral symptoms due to the overproduction and accumulation of d-aminolevulinic acid (ALA) which leads to an oxidative damage resulting from the formation of reactive oxygen species (ROS). In cutaneous porphyrias, the symptomatology is a result of porphyrin accumulation which also induces ROS moulding. In both cases, their clinical signs are precipitated by endogenous factors (stress, hormones, low calories intake) and/or exogenous drugs, in particular some anaesthetics. A review of the biochemical and genetic results obtained from patients with different porphyrias, diagnosed at the CIPYP during the last 38 years is presented here, aimed at obtaining additional evidence about the molecular nature of these disorders. The achievements obtained from experimental porphyria models -pharmacologically or genetically induced- are also described, which contributed to the classification of some drugs as prohibited for their use in porphyric patients. Finally, as porphyrins produce ROS and therefore cellular death, they can be used to treat infections by heme-deficient organisms like Trypanosoma cruzi and also as photosensitizers in photodynamic therapy (TFD).


As Porfirias são doenças metabólicas decorrentes de falhas na biossíntese do Hemo, caracterizadas por um padrão específico de acumulação e excreção de intermediários responsáveis de sua patofisiologia. Nas Porfirias Agudas, o excesso de ácido δ-aminolevulínico (ALA) produz uma sintomatologia neuroabdominal associada ao dano oxidativo por formação de espécies reativas de oxigênio (ROS), decorrentes da auto-oxidação do ALA. Nas Cutâneas a sintomatologia é produto da acumulação de porfirinas, que como o ALA, induzem a formação de ROS. Seu desencadeamento precipita-se por fatores endógenos (jejum, estresse, hormônios) e/ou exógenos (fármacos), especialmente alguns anestésicos. Apresenta-se uma revisão dos estudos bioquímicos e genéticos em pacientes com diferentes Porfirias obtidos no Centro de Investigações de Porfirias e Porfirinas (CIPYP), durante os últimos 38 anos, que permitiram ampliar o conhecimento sobre as bases moleculares destas patologias. Descrevem-se as conquistas resultantes do uso de modelos experimentais de Porfiria, induzida farmacológica ou geneticamente, que contribuíram à classificação de algumas drogas como proibidas para pacientes com Porfiria. Afinal, as porfirinas geradoras de ROS e, por conseguinte, indutoras de morte celular têm sua aplicação para combater infecções por organismos hemo-deficientes como Trypanosoma cruzi e também ser utilizadas como fotossensibilizadores na terapia fotodinâmica (TFD).


Subject(s)
Humans , Anesthetics , Photochemotherapy , Porphyrias , Porphyrias/metabolism , Porphyrins , Trypanosoma cruzi , Porphyria, Erythropoietic , Protoporphyria, Erythropoietic
7.
Biochem Cell Biol ; 94(4): 297-305, 2016 08.
Article in English | MEDLINE | ID: mdl-27472495

ABSTRACT

5-Aminolevulinic acid (ALA) seems to be responsible for the neuropsychiatric manifestations of acute intermittent porphyria (AIP). Our aim was to study the effect of ALA on the different metabolic pathways in the mouse brain to enhance our knowledge about the action of this heme precursor on the central nervous system. Heme metabolism, the cholinergic system, the defense enzyme system, and nitric oxide metabolism were evaluated in the encephalon of CF-1 mice receiving a single (40 mg/kg body mass) or multiple doses of ALA (40 mg/kg, every 48 h for 14 days). We subsequently found ALA accumulation in the encephalon of the mice. ALA also altered the brain cholinergic system. After one dose of ALA, a decrease in superoxide dismutase activity and a reduction in glutathione levels were detected, whereas malondialdehyde levels and catalase activity were increased. Heme oxygenase was also increased as an antioxidant response to protect the encephalon against injury. All nitric oxide synthase isoforms were induced by ALA, these changes were more significant for the inducible isoform in glial cells. In conclusion, ALA affected several metabolic pathways in mouse encephalon. Data indicate that a rapid response to oxidative stress was developed; however, with long-term intoxication, the redox balance was probably restored, thereby minimizing oxidative damage.


Subject(s)
Acetylcholinesterase/metabolism , Aminolevulinic Acid/pharmacology , Antioxidants/metabolism , Brain/metabolism , Heme/metabolism , Nitric Oxide Synthase/metabolism , Oxidative Stress/drug effects , Animals , Brain/drug effects , Brain/pathology , Male , Mice , Photosensitizing Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...