Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Chem ; 22(4): 279-94, 1998 Jun 20.
Article in English | MEDLINE | ID: mdl-9680689

ABSTRACT

The preference functions method is described for prediction of membrane-buried helices in membrane proteins. Preference for the alpha-helix conformation of amino acid residue in a sequence is a non-linear function of average hydrophobicity of its sequence neighbors. Kyte-Doolittle hydropathy values are used to extract preference functions from a training data set of integral membrane proteins of partially known secondary structure. Preference functions for beta-sheet, turn and undefined conformation are also extracted by including beta-class soluble proteins of known structure in the training data set. Conformational preferences are compared in tested sequence for each residue and predicted secondary structure is associated with the highest preference. This procedure is incorporated in an algorithm that performs accurate prediction of transmembrane helical segments. Correct sequence location and secondary structure of transmembrane segments is predicted for 20 of 21 reference membrane polypeptides with known crystal structure that were not included in the training data set. Comparison with hydrophobicity plots revealed that our preference profiles are more accurate and exhibit higher resolution and less noise. Shorter unstable or movable membrane-buried alpha-helices are also predicted to exist in different membrane proteins with transport function. For instance, in the sequence of voltage-gated ion channels and glutamate receptors, N-terminal parts of known P-segments can be located as characteristic alpha-helix preference peaks. Our e-mail server: predict@drava.etfos.hr, returns a preference profile and secondary structure prediction for a suspected or known membrane protein when its sequence is submitted.


Subject(s)
Membrane Proteins/chemistry , Algorithms , Amino Acid Sequence , Animals , Crystallography, X-Ray , Databases, Factual , Evaluation Studies as Topic , Humans , Molecular Sequence Data , Nonlinear Dynamics , Potassium Channels/chemistry , Protein Structure, Secondary , Receptors, Glutamate/chemistry
2.
EMBO J ; 10(9): 2321-30, 1991 Sep.
Article in English | MEDLINE | ID: mdl-1868826

ABSTRACT

From the lysosomal cysteine proteinase cathepsin B, isolated from human liver in its two-chain form, monoclinic crystals were obtained which contain two molecules per asymmetric unit. The molecular structure was solved by a combination of Patterson search and heavy atom replacement methods (simultaneously with rat cathepsin B) and refined to a crystallographic R value of 0.164 using X-ray data to 2.15 A resolution. The overall folding pattern of cathepsin B and the arrangement of the active site residues are similar to the related cysteine proteinases papain, actinidin and calotropin DI. 166 alpha-carbon atoms out of 248 defined cathepsin B residues are topologically equivalent (with an r.m.s. deviation of 1.04 A) with alpha-carbon atoms of papain. However, several large insertion loops are accommodated on the molecular surface and modify its properties. The disulphide connectivities recently determined for bovine cathepsin B by chemical means were shown to be correct. Some of the primed subsites are occluded by a novel insertion loop, which seems to favour binding of peptide substrates with two residues carboxy-terminal to the scissile peptide bond; two histidine residues (His110 and His111) in this "occluding loop' provide positively charged anchors for the C-terminal carboxylate group of such polypeptide substrates. These structural features explain the well-known dipeptidyl carboxypeptidase activity of cathepsin B. The other subsites adjacent to the reactive site Cys29 are relatively similar to papain; Glu245 in the S2 subsite favours basic P2-side chains. The above mentioned histidine residues, but also the buried Glu171 might represent the group with a pKa of approximately 5.5 near the active site, which governs endo- and exopeptidase activity. The "occluding loop' does not allow cystatin-like protein inhibitors to bind to cathepsin B as they do to papain, consistent with the reduced affinity of these protein inhibitors for cathepsin B compared with the related plant enzymes.


Subject(s)
Cathepsin B/chemistry , Liver/enzymology , Amino Acid Sequence , Binding Sites , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Crystallization , Cysteine Endopeptidases/chemistry , Humans , Molecular Sequence Data , Papain/chemistry , Peptides/metabolism , Protein Conformation , Sequence Homology, Nucleic Acid , Substrate Specificity , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...