Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cells ; 12(16)2023 08 21.
Article in English | MEDLINE | ID: mdl-37626923

ABSTRACT

Although melanoma accounts for only 5.3% of skin cancer, it results in >75% of skin-cancer-related deaths. To avoid disfiguring surgeries on the head and neck associated with surgical excision, there is a clear unmet need for other strategies to selectively remove cutaneous melanoma lesions. Mohs surgery is the current treatment for cutaneous melanoma lesions and squamous and basal cell carcinoma. While Mohs surgery is an effective way to remove melanomas in situ, normal tissue is also excised to achieve histologically negative margins. This paper describes a novel combination therapy of nonthermal plasma (NTP) which emits a multitude of reactive oxygen species (ROS) and the injection of a pharmaceutical agent. We have shown that the effects of NTP are augmented by the DNA-damaging prodrug, tirapazamine (TPZ), which becomes a free radical only in conditions of hypoxemia, which is often enhanced in the tumor microenvironment. In this study, we demonstrate the efficacy of the combination therapy through experiments with B16-F10 and 1205 Lu metastatic melanoma cells both in vitro and in vivo. We also show the safety parameters of the therapy with no significant effects of the therapy when applied to porcine skin. We show the need for the intratumor delivery of TPZ in combination with the surface treatment of NTP and present a model of a medical device to deliver this combination therapy. The importance of functional gap junctions is indicated as a mechanism to promote the therapeutic effect. Collectively, the data support a novel therapeutic combination to treat melanoma and the development of a medical device to deliver the treatment in situ.


Subject(s)
Melanoma , Skin Neoplasms , Swine , Animals , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Tirapazamine/pharmacology , Combined Modality Therapy , Tumor Microenvironment , Melanoma, Cutaneous Malignant
2.
Oncotarget ; 11(37): 3443-3458, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32973969

ABSTRACT

Metastatic melanoma cells overexpressing gap junctions were assayed for their ability to propagate cell death by a novel combination therapy that generates reactive oxygen species (ROS) by both 1) non-thermal plasma (NTP) and 2) tirapazamine (TPZ) under hypoxic conditions. Results demonstrate additive-to-synergistic effects of combination therapy compared to each agent individually. NTP induces highly localized cell death in target areas whereas TPZ partially reduces viability over the total surface area. However, when high gap junction expression was induced in melanoma cells, effects of combination NTP+TPZ therapy was augmented, spreading cell death across the entire plate. Similarly, in vivo studies of human metastatic melanoma in a mouse tumor model demonstrate that the combined effect of NTP+TPZ causes a 90% reduction in tumor volume, specifically in the model expressing gap junctions. Treatment with NTP+TPZ increases gene expression in the apoptotic pathway and oxidative stress while decreasing genes related to cell migration. Immune response was also elicited through differential regulation of cytokines and chemokines, suggesting potential for this therapy to induce a cytotoxic immune response with fewer side effects than current therapies. Interestingly, the gap junction protein, Cx26 was upregulated following treatment with NTP+TPZ and these gap junctions were shown to maintain functionality during the onset of treatment. Therefore, we propose that gap junctions both increase the efficacy of NTP+TPZ and perpetuate a positive feedback mechanism of gap junction expression and tumoricidal activity. Our unique approach to ROS induction in tumor cells with NTP+TPZ shows potential as a novel cancer treatment.

3.
J Cell Sci ; 129(23): 4399-4410, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27777264

ABSTRACT

Gap junction proteins (connexins) have crucial effects on cell motility in many systems, from migration of neural crest cells to promotion of metastatic invasiveness. Here, we show that expression of Cx26 (also known as GJB2) in HeLa cells specifically enhances cell motility in scrape wounding and sparse culture models. This effect is dependent on gap junction channels and is isotype specific [Cx26 enhances motility, whereas Cx43 (also known as GJA1) does not and Cx32 (also known as GJB1) has an intermediate effect]. The increased motility is associated with reduced cell adhesiveness, caused by loss of N-cadherin protein and RNA at the wound edge. This in turn causes a redistribution of N-cadherin-binding proteins (p120 catenin and ß-catenin) to the cytosol and nucleus, respectively. The former activates Rac-1, which mediates cytoskeletal rearrangements needed for filopod extension. The latter is associated with increased expression of urokinase plasminogen activating receptor (an activator of extracellular proteases) and secretion of extracellular matrix components like collagen. Although these effects were dependent on Cx26-mediated coupling of the cells, they are not mediated by the same signal (i.e. cAMP) through which Cx26 has been shown to suppress proliferation in the same system.


Subject(s)
Cell Movement , Connexin 26/metabolism , Cadherins/metabolism , Cell Adhesion , Coculture Techniques , Cyclic AMP/metabolism , Gap Junctions/metabolism , HeLa Cells , Humans , Mitosis , Models, Biological , Protein Binding , Transfection , Wound Healing
4.
J Vis Exp ; (98)2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25938644

ABSTRACT

Blood serum serves as a chemoattractant towards which cancer cells migrate and invade, facilitating their intravasation into microvessels. However, the actual molecules towards which the cells migrate remain elusive. This modified invasion assay has been developed to identify targets which drive cell migration and invasion. This technique compares the invasion index under three conditions to determine whether a specific hormone, growth factor, or cytokine plays a role in mediating the invasive potential of a cancer cell. These conditions include i) normal fetal bovine serum (FBS), ii) charcoal-stripped FBS (CS-FBS), which removes hormones, growth factors, and cytokines and iii) CS-FBS + molecule (denoted "X"). A significant change in cell invasion with CS-FBS as compared to FBS, indicates the involvement of hormones, cytokines or growth factors in mediating the change. Individual molecules can then be added back to CS-FBS to assay their ability to reverse or rescue the invasion phenotype. Furthermore, two or more factors can be combined to evaluate the additive or synergistic effects of multiple molecules in driving or inhibiting invasion. Overall, this method enables the investigator to determine whether hormones, cytokines, and/or growth factors play a role in cell invasion by serving as chemoattractants or inhibitors of invasion for a particular type of cancer cell or a specific mutant. By identifying specific chemoattractants and inhibitors, this modified invasion assay may help to elucidate signaling pathways that direct cancer cell invasion.


Subject(s)
Cell Culture Techniques/methods , Cytokines/physiology , Hormones/physiology , Intercellular Signaling Peptides and Proteins/pharmacology , Neoplasms/pathology , Animals , Cattle , Cell Line, Tumor , Cell Movement/physiology , Culture Media , Cytokines/pharmacology , Hormones/pharmacology , Humans , In Vitro Techniques , Neoplasm Invasiveness
5.
Mol Cell ; 53(6): 916-928, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24613345

ABSTRACT

Reactive oxygen species (ROS) activate NF-E2-related transcription factor 2 (Nrf2), a key transcriptional regulator driving antioxidant gene expression and protection from oxidant injury. Here, we report that in response to elevation of intracellular ROS above a critical threshold, Nrf2 stimulates expression of transcription Kruppel-like factor 9 (Klf9), resulting in further Klf9-dependent increases in ROS and subsequent cell death. We demonstrated that Klf9 independently causes increased ROS levels in various types of cultured cells and in mouse tissues and is required for pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Mechanistically, Klf9 binds to the promoters and alters the expression of several genes involved in the metabolism of ROS, including suppression of thioredoxin reductase 2, an enzyme participating in ROS clearance. Our data reveal an Nrf2-dependent feedforward regulation of ROS and identify Klf9 as a ubiquitous regulator of oxidative stress and lung injury.


Subject(s)
Gene Expression Regulation , Kruppel-Like Transcription Factors/genetics , NF-E2-Related Factor 2/genetics , Oxidative Stress , Pulmonary Fibrosis/genetics , Animals , Binding Sites , Bleomycin , Cell Line, Tumor , Genes, Reporter , Humans , Kruppel-Like Transcription Factors/metabolism , Luciferases/genetics , Luciferases/metabolism , Lung/metabolism , Lung/pathology , Mice , NF-E2-Related Factor 2/metabolism , NIH 3T3 Cells , Promoter Regions, Genetic , Protein Binding , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Reactive Oxygen Species , Signal Transduction
6.
PLoS One ; 8(12): e82335, 2013.
Article in English | MEDLINE | ID: mdl-24312655

ABSTRACT

Connexins (Cx), which constitute gap junction intercellular channels in vertebrates, have been shown to suppress transformed cell growth and tumorigenesis, but the mechanism(s) still remain largely speculative. Here, we define the molecular basis by which Cx26, but less frequently Cx43 or Cx32, selectively confer growth suppression on cancer cells. Functional intercellular coupling is shown to be required, producing partial blocks of the cell cycle due to prolonged activation of several mitogenic kinases. PKA is both necessary and sufficient for the Cx26 induced growth inhibition in low serum and the absence of anchorage. Activation of PKA was not associated with elevated cAMP levels, but appeared to result from a redistribution of cAMP throughout the cell population, eliminating the cell cycle oscillations in cAMP required for efficient cell cycle progression. Cx43 and Cx32 fail to mediate this redistribution as, unlike Cx26, these channels are closed during the G2/M phase of the cell cycle when cAMP levels peak. Comparisons of tumor cell lines indicate that this is a general pattern, with growth suppression by connexins occurring whenever cAMP oscillates with the cell cycle, and the gap junction remain open throughout the cell cycle. Thus, gap junctional coupling, in the absence of any external signals, provides a general means to limit the mitotic rate of cell populations.


Subject(s)
Connexins/metabolism , Cyclic AMP/metabolism , Cell Cycle/physiology , Cell Proliferation/physiology , Connexin 26 , Connexin 43/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , HeLa Cells , Humans , Gap Junction beta-1 Protein
7.
Cell Rep ; 5(2): 493-507, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24139804

ABSTRACT

Melanoma is one of the most aggressive types of human cancers, and the mechanisms underlying melanoma invasive phenotype are not completely understood. Here, we report that expression of guanosine monophosphate reductase (GMPR), an enzyme involved in de novo biosynthesis of purine nucleotides, was downregulated in the invasive stages of human melanoma. Loss- and gain-of-function experiments revealed that GMPR downregulates the amounts of several GTP-bound (active) Rho-GTPases and suppresses the ability of melanoma cells to form invadopodia, degrade extracellular matrix, invade in vitro, and grow as tumor xenografts in vivo. Mechanistically, we demonstrated that GMPR partially depletes intracellular GTP pools. Pharmacological inhibition of de novo GTP biosynthesis suppressed whereas addition of exogenous guanosine increased invasion of melanoma cells as well as cells from other cancer types. Our data identify GMPR as a melanoma invasion suppressor and establish a link between guanosine metabolism and Rho-GTPase-dependent melanoma cell invasion.


Subject(s)
GMP Reductase/metabolism , Melanoma/enzymology , Purine Nucleosides/biosynthesis , Animals , Cell Line, Tumor , Cell Movement , Extracellular Matrix/metabolism , GMP Reductase/antagonists & inhibitors , GMP Reductase/genetics , Guanosine Triphosphate/metabolism , HCT116 Cells , Humans , IMP Dehydrogenase/metabolism , Melanoma/metabolism , Melanoma/pathology , Mice , Phenotype , RNA Interference , RNA, Small Interfering/metabolism , Transplantation, Heterologous , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism
8.
Am J Pathol ; 182(1): 142-51, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23245831

ABSTRACT

In normal human cells, oncogene-induced senescence (OIS) depends on induction of DNA damage response. Oxidative stress and hyperreplication of genomic DNA have been proposed as major causes of DNA damage in OIS cells. Here, we report that down-regulation of deoxyribonucleoside pools is another endogenous source of DNA damage in normal human fibroblasts (NHFs) undergoing HRAS(G12V)-induced senescence. NHF-HRAS(G12V) cells underexpressed thymidylate synthase (TS) and ribonucleotide reductase (RR), two enzymes required for the entire de novo deoxyribonucleotide biosynthesis, and possessed low dNTP levels. Chromatin at the promoters of the genes encoding TS and RR was enriched with retinoblastoma tumor suppressor protein and histone H3 tri-methylated at lysine 9. Importantly, ectopic coexpression of TS and RR or addition of deoxyribonucleosides substantially suppressed DNA damage, senescence-associated phenotypes, and proliferation arrest in two types of NHF-expressing HRAS(G12V). Reciprocally, short hairpin RNA-mediated suppression of TS and RR caused DNA damage and senescence in NHFs, although less efficiently than HRAS(G12V). However, overexpression of TS and RR in quiescent NHFs did not overcome proliferation arrest, suggesting that unlike quiescence, OIS requires depletion of dNTP pools and activated DNA replication. Our data identify a previously unknown role of deoxyribonucleotides in regulation of OIS.


Subject(s)
Cellular Senescence/genetics , DNA Damage/genetics , Deoxyribonucleotides/metabolism , Oncogenes/physiology , Cell Proliferation , Cells, Cultured , Cellular Senescence/physiology , DNA Replication/genetics , Deoxyribonucleotides/genetics , Fibroblasts/metabolism , Fibroblasts/physiology , Humans , Proto-Oncogene Proteins p21(ras)/physiology , Ribonucleotide Reductases/biosynthesis , Ribonucleotide Reductases/physiology , Thymidylate Synthase/biosynthesis , Thymidylate Synthase/physiology
9.
J Cell Physiol ; 228(4): 853-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23042412

ABSTRACT

Previous reports have implicated connexin 43 (Cx43) as a tumor suppressor in early stages of tumorigenesis and in some cases as an enhancer of cell migration in later stages. To address the role of Cx43 in melanoma tumor progression, we utilized two melanoma cell lines derived from the same patient in pre-metastasis (WM793B) and following isolation from a lung metastasis in nude mice (1205Lu). Our results demonstrate a strikingly increased expression of Cx43 in both the pre-metastatic and metastatic melanoma cell lines that were actively migrating compared to non-migrating cells. To further investigate the role of Cx43 in these melanoma cells, we overexpressed wild type (wt) Cx43 as well as a mutant dominant negative Cx43 mutant that causes closed channels (T154A). The metastatic 1205Lu cells expressing Cx43-T154A showed a twofold decrease in colony formation on soft agar while the nonmetastatic WM793B cells showed no significant change. In invasion assays through a collagen matrix, the same Cx43-T154A 1205Lu cells demonstrated a three- to fourfold increase in the invasion index compared to either wt Cx43 or vector control cells. The increase in invasiveness was eliminated by migration towards media with charcoal-stripped serum, suggesting that migration may be directed towards a lipophilic compound(s). Our findings demonstrate that a dominant negative Cx43 mutant deficient in channel formation exhibits a dual pattern of regulation in metastatic melanoma cells with a decrease in anchorage-independent growth and an increase in invasive potential.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Connexin 43/genetics , Connexin 43/metabolism , Melanoma/metabolism , Melanoma/pathology , Neoplasm Invasiveness/pathology , Animals , Cell Line, Tumor , Cell Movement/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Melanoma/genetics , Mice , Mice, Nude , Neoplasm Invasiveness/genetics
10.
Cancer Biol Ther ; 13(13): 1299-306, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22895073

ABSTRACT

Selective induction of apoptosis in melanoma cells is optimal for therapeutic development. To achieve this goal, a non-thermal helium plasma torch was modified for use on cultured cells in a temperature-controlled environment. Melanoma cells were targeted with this torch (1) in parallel cultures with keratinocytes, (2) in co-culture with keratinocytes and (3) in a soft agar matrix. Melanoma cells displayed high sensitivity to reactive oxygen species generated by the torch and showed a 6-fold increase in cell death compared with keratinocytes. The extent of cell death was compared between melanoma cells and normal human keratinocytes in both short-term (5 min) co-culture experiments and longer assessments of apoptotic cell death (18-24 h). Following a 10 sec plasma exposure there was a 4.9-fold increase in the cell death of melanoma vs. keratinocytes as measured after 24 h at the target site of the plasma beam. When the treatment time was increased to 30 sec, a 98% cell death was reported for melanoma cells, which was 6-fold greater than the extent of cell death in keratinocytes. Our observations further indicate that this preferential cell death is largely due to apoptosis.. In addition, we report that this non-thermal plasma torch kills melanoma cells growing in soft agar, suggesting that the plasma torch is capable of inducing melanoma cell death in 3D settings. We demonstrate that the presence of gap junctions may increase the area of cell death, likely due to the "bystander effect" of passing apoptotic signals between cells. Our findings provide a basis for further development of this non-invasive plasma torch as a potential treatment for melanoma.


Subject(s)
Apoptosis/drug effects , Keratinocytes/drug effects , Melanoma/therapy , Plasma Gases/pharmacology , Cell Line, Tumor , Coculture Techniques , Gap Junctions/drug effects , Gap Junctions/metabolism , Helium/chemistry , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Melanoma/metabolism , Melanoma/pathology , Plasma Gases/chemistry , Reactive Oxygen Species/metabolism
11.
J Physiol ; 590(1): 119-29, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22025664

ABSTRACT

Acetylcholine receptor-channels (AChRs) mediate fast synaptic transmission between nerve and muscle. In order to better-understand the mechanism by which this protein assembles and isomerizes between closed- and open-channel conformations we measured changes in the diliganded gating equilibrium constant (E(2)) consequent to mutations of residues at the C-terminus of loop 9 (L9) in the α and ε subunits of mouse neuromuscular AChRs. These amino acids are close to two interesting interfaces, between the extracellular and transmembrane domain within a subunit (E­T interface) and between primary and complementary subunits (P­C interface). Most α subunit mutations modestly decreased E(2) (mainly by slowing the channel-opening rate constant) and sometimes produced AChRs that had heterogeneous gating kinetic properties. Mutations in the ε subunit had a larger effect and could either increase or decrease E(2), but did not induce kinetic heterogeneity. There are broad-but-weak energetic interactions between αL9 residues and others at the αE­T interface, as well as between the εL9 residue and others at the P­C interface (in particular, the M2­M3 linker). These interactions serve, in part, to maintain the structural integrity of the AChR assembly at the E­T interface. Overall, the energy changes of L9 residues are significant but smaller than in other regions of the protein.


Subject(s)
Acetylcholine/genetics , Acetylcholine/metabolism , Ion Channel Gating/genetics , Ion Channel Gating/physiology , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Animals , Binding Sites , Cell Line, Transformed , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/physiology , HEK293 Cells , Humans , Kinetics , Mice , Molecular Conformation , Muscles/metabolism , Muscles/physiology , Point Mutation , Protein Structure, Tertiary , Protein Subunits
12.
Blood ; 119(6): 1450-8, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-22144178

ABSTRACT

Bortezomib, a therapeutic agent for multiple myeloma (MM) and mantle cell lymphoma, suppresses proteosomal degradation leading to substantial changes in cellular transcriptional programs and ultimately resulting in apoptosis. Transcriptional regulators required for bortezomib-induced apoptosis in MM cells are largely unknown. Using gene expression profiling, we identified 36 transcription factors that displayed altered expression in MM cells treated with bortezomib. Analysis of a publically available database identified Kruppel-like family factor 9 (KLF9) as the only transcription factor with significantly higher basal expression in MM cells from patients who responded to bortezomib compared with nonresponders. We demonstrated that KLF9 in cultured MM cells was up-regulated by bortezomib; however, it was not through the induction of endoplasmic reticulum stress. Instead, KLF9 levels correlated with bortezomib-dependent inhibition of histone deacetylases (HDAC) and were increased by the HDAC inhibitor LBH589 (panobinostat). Furthermore, bortezomib induced binding of endogenous KLF9 to the promoter of the proapoptotic gene NOXA. Importantly, KLF9 knockdown impaired NOXA up-regulation and apoptosis caused by bortezomib, LBH589, or a combination of theses drugs, whereas KLF9 overexpression induced apoptosis that was partially NOXA-dependent. Our data identify KLF9 as a novel and potentially clinically relevant transcriptional regulator of drug-induced apoptosis in MM cells.


Subject(s)
Apoptosis/drug effects , Boronic Acids/pharmacology , Hydroxamic Acids/pharmacology , Kruppel-Like Transcription Factors/genetics , Multiple Myeloma/genetics , Pyrazines/pharmacology , Antineoplastic Agents/pharmacology , Blotting, Western , Bortezomib , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Indoles , Kruppel-Like Transcription Factors/metabolism , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Oligonucleotide Array Sequence Analysis , Panobinostat , Promoter Regions, Genetic/genetics , Protein Binding , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism
13.
J Biol Chem ; 281(12): 7994-8009, 2006 Mar 24.
Article in English | MEDLINE | ID: mdl-16407179

ABSTRACT

Single site mutations in connexins have provided insights about the influence specific amino acids have on gap junction synthesis, assembly, trafficking, and functionality. We have discovered a single point mutation that eliminates functionality without interfering with gap junction formation. The mutation occurs at a threonine residue located near the cytoplasmic end of the third transmembrane helix. This threonine is strictly conserved among members of the alpha- and beta-connexin subgroups but not the gamma-subgroup. In HeLa cells, connexin43 and connexin26 mutants are synthesized, traffic to the plasma membrane, and make gap junctions with the same overall appearance as wild type. We have isolated connexin26T135A gap junctions both from HeLa cells and baculovirus-infected insect Sf9 cells. By using cryoelectron microscopy and correlation averaging, difference images revealed a small but significant size change within the pore region and a slight rearrangement of the subunits between mutant and wild-type connexons expressed in Sf9 cells. Purified, detergent-solubilized mutant connexons contain both hexameric and partially disassembled structures, although wild-type connexons are almost all hexameric, suggesting that the three-dimensional mutant connexon is unstable. Mammalian cells expressing gap junction plaques composed of either connexin43T154A or connexin26T135A showed an absence of dye coupling. When expressed in Xenopus oocytes, these mutants, as well as a cysteine substitution mutant of connexin50 (connexin50T157C), failed to produce electrical coupling in homotypic and heteromeric pairings with wild type in a dominant-negative effect. This mutant may be useful as a tool for knocking down or knocking out connexin function in vitro or in vivo.


Subject(s)
Cell Membrane/metabolism , Connexins/chemistry , Connexins/genetics , Mutation , Threonine/chemistry , Amino Acid Sequence , Animals , Baculoviridae/metabolism , Cell Line , Connexin 26 , Connexin 43/genetics , Cryoelectron Microscopy , Cysteine/chemistry , Cytoplasm/metabolism , DNA, Complementary/metabolism , Electrophysiology , Fluorescent Dyes/pharmacology , Gap Junctions , Genes, Dominant , HeLa Cells , Humans , Image Processing, Computer-Assisted , Insecta , Keratinocytes/metabolism , Light , Microscopy, Electron , Microscopy, Fluorescence , Molecular Sequence Data , Mutagenesis, Site-Directed , Oocytes/metabolism , Oxygen/metabolism , Phylogeny , Point Mutation , RNA, Complementary/metabolism , Rats , Time Factors , Transfection , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...