Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 22(12): 1414-1418, 2022 12.
Article in English | MEDLINE | ID: mdl-36475959

ABSTRACT

'Oumuamua, the first known object of extrasolar origin seen to enter our Solar System, has multiple unusual characteristics that, taken together, are very difficult to explain with conventional astronomical entities like asteroids and comets. Consequently, it has been hypothesized that 'Oumuamua is an interstellar probe that was constructed by an alien civilization. We demonstrate that the accomplishments that can be achieved with large space telescopes/interferometers in the alien's planetary system will completely quench any motivation for construction and launch of an 'Oumuamua-like probe. The absence of any such motivation attests that 'Oumuamua is not an alien creation. The existence of large space telescopes has important implications for a range of topics that include interstellar space travel, the Zoo Hypothesis, METI, and UFOs.


Subject(s)
Civilization , Solar System
2.
Nature ; 585(7825): 363-367, 2020 09.
Article in English | MEDLINE | ID: mdl-32939071

ABSTRACT

Astronomers have discovered thousands of planets outside the Solar System1, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star2, but more distant planets can survive this phase and remain in orbit around the white dwarf3,4. Some white dwarfs show evidence for rocky material floating in their atmospheres5, in warm debris disks6-9 or orbiting very closely10-12, which has been interpreted as the debris of rocky planets that were scattered inwards and tidally disrupted13. Recently, the discovery of a gaseous debris disk with a composition similar to that of ice giant planets14 demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far, no intact planets have been detected in close orbits around white dwarfs. Here we report the observation of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. We observed and modelled the periodic dimming of the white dwarf caused by the planet candidate passing in front of the star in its orbit. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95 per cent confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red giant phase and shrinks owing to friction. In this case, however, the long orbital period (compared with other white dwarfs with close brown dwarf or stellar companions) and low mass of the planet candidate make common-envelope evolution less likely. Instead, our findings for the WD 1856+534 system indicate that giant planets can be scattered into tight orbits without being tidally disrupted, motivating the search for smaller transiting planets around white dwarfs.

3.
Science ; 366(6463): 356-359, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31624210

ABSTRACT

Oxygen fugacity is a measure of rock oxidation that influences planetary structure and evolution. Most rocky bodies in the Solar System formed at oxygen fugacities approximately five orders of magnitude higher than a hydrogen-rich gas of solar composition. It is unclear whether this oxidation of rocks in the Solar System is typical among other planetary systems. We exploit the elemental abundances observed in six white dwarfs polluted by the accretion of rocky bodies to determine the fraction of oxidized iron in those extrasolar rocky bodies and therefore their oxygen fugacities. The results are consistent with the oxygen fugacities of Earth, Mars, and typical asteroids in the Solar System, suggesting that at least some rocky exoplanets are geophysically and geochemically similar to Earth.

SELECTION OF CITATIONS
SEARCH DETAIL
...