Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39000829

ABSTRACT

This paper presents a new deep-learning architecture designed to enhance the spatial synchronization between CMOS and event cameras by harnessing their complementary characteristics. While CMOS cameras produce high-quality imagery, they struggle in rapidly changing environments-a limitation that event cameras overcome due to their superior temporal resolution and motion clarity. However, effective integration of these two technologies relies on achieving precise spatial alignment, a challenge unaddressed by current algorithms. Our architecture leverages a dynamic graph convolutional neural network (DGCNN) to process event data directly, improving synchronization accuracy. We found that synchronization precision strongly correlates with the spatial concentration and density of events, with denser distributions yielding better alignment results. Our empirical results demonstrate that areas with denser event clusters enhance calibration accuracy, with calibration errors increasing in more uniformly distributed event scenarios. This research pioneers scene-based synchronization between CMOS and event cameras, paving the way for advancements in mixed-modality visual systems. The implications are significant for applications requiring detailed visual and temporal information, setting new directions for the future of visual perception technologies.

3.
BMC Psychol ; 12(1): 245, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689352

ABSTRACT

Decision-making under uncertainty, a cornerstone of human cognition, is encapsulated by the "secretary problem" in optimal stopping theory. Our study examines this decision-making challenge, where participants are required to sequentially evaluate and make irreversible choices under conditions that simulate cognitive overload. We probed neurophysiological responses by engaging 27 students in a secretary problem simulation while undergoing EEG monitoring, focusing on Event-Related Potentials (ERPs) P200 and P400, and Theta to Beta Ratio (TBR) dynamics.Results revealed a nuanced pattern: the P200 component's amplitude declined from the initial to the middle offers, suggesting a diminishing attention span as participants grew accustomed to the task. This attenuation reversed at the final offer, indicating a heightened cognitive processing as the task concluded. In contrast, the P400 component's amplitude peaked at the middle offer, hinting at increased cognitive evaluation, and tapered off at the final decision. Additionally, TBR dynamics illustrated a fluctuation in attentional control and emotional regulation throughout the decision-making sequence, enhancing our understanding of the cognitive strategies employed.The research elucidates the dynamic interplay of cognitive processes in high-stakes environments, with neurophysiological markers fluctuating significantly as participants navigated sequential choices. By correlating these fluctuations with decision-making behavior, we provide insights into the evolving strategies from heightened alertness to strategic evaluation. Our findings offer insights that could inform the use of neurophysiological data in the development of decision-making frameworks, potentially contributing to the practical application of cognitive research in real-life contexts.


Subject(s)
Attention , Decision Making , Electroencephalography , Evoked Potentials , Humans , Decision Making/physiology , Evoked Potentials/physiology , Male , Female , Young Adult , Attention/physiology , Adult , Cognition/physiology , Brain/physiology , Uncertainty , Theta Rhythm/physiology , Beta Rhythm/physiology
4.
BMC Psychol ; 12(1): 87, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388958

ABSTRACT

Predicting attachment styles using AI algorithms remains relatively unexplored in scientific literature. This study addresses this gap by employing EEG data to evaluate the effectiveness of ROCKET-driven features versus classic features, both analyzed using the XGBoost machine learning algorithm, for classifying 'secure' or 'insecure' attachment styles.Participants, fourth-year engineering students aged 20-35, first completed the ECR-R questionnaire. A subset then underwent EEG sessions while performing the Arrow Flanker Task, receiving success or failure feedback for each trial.Our findings reveal the effectiveness of both feature sets. The dataset with ROCKET-derived features demonstrated an 88.41% True Positive Rate (TPR) in classifying 'insecure' attachment styles, compared to the classic features dataset, which achieved a notable TPR as well. Visual representations further support ROCKET-derived features' proficiency in identifying insecure attachment tendencies, while the classic features exhibited limitations in classification accuracy. Although the ROCKET-derived features exhibited higher TPR, the classic features also presented a substantial predictive ability.In conclusion, this study advances the integration of AI in psychological assessments, emphasizing the significance of feature selection for specific datasets and applications. While both feature sets effectively classified EEG-based attachment styles, the ROCKET-derived features demonstrated a superior performance across multiple metrics, making them the preferred choice for this study.


Subject(s)
Algorithms , Electroencephalography , Object Attachment , Humans , Young Adult , Adult
5.
Front Psychol ; 15: 1326791, 2024.
Article in English | MEDLINE | ID: mdl-38318079

ABSTRACT

Introduction: Attachment styles are crucial in human relationships and have been explored through neurophysiological responses and EEG data analysis. This study investigates the potential of EEG data in predicting and differentiating secure and insecure attachment styles, contributing to the understanding of the neural basis of interpersonal dynamics. Methods: We engaged 27 participants in our study, employing an XGBoost classifier to analyze EEG data across various feature domains, including time-domain, complexity-based, and frequency-based attributes. Results: The study found significant differences in the precision of attachment style prediction: a high precision rate of 96.18% for predicting insecure attachment, and a lower precision of 55.34% for secure attachment. Balanced accuracy metrics indicated an overall model accuracy of approximately 84.14%, taking into account dataset imbalances. Discussion: These results highlight the challenges in using EEG patterns for attachment style prediction due to the complex nature of attachment insecurities. Individuals with heightened perceived insecurity predominantly aligned with the insecure attachment category, suggesting a link to their increased emotional reactivity and sensitivity to social cues. The study underscores the importance of time-domain features in prediction accuracy, followed by complexity-based features, while noting the lesser impact of frequency-based features. Our findings advance the understanding of the neural correlates of attachment and pave the way for future research, including expanding demographic diversity and integrating multimodal data to refine predictive models.

6.
Sensors (Basel) ; 23(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38067866

ABSTRACT

In this study, we aim to develop a machine learning model to predict the level of coordination between two players in tacit coordination games by analyzing the similarity of their spatial EEG features. We present an analysis, demonstrating the model's sensitivity, which was assessed through three conventional measures (precision, recall, and f1 score) based on the EEG patterns. These measures are evaluated in relation to the coordination task difficulty, as determined by the coordination index (CI). Tacit coordination games are games in which two individuals are requested to select the same option out of a closed set without the ability to communicate. This study aims to examine the effect of the difficulty of a semantic coordination task on the ability to predict a successful coordination between two players based on the compatibility between their EEG signals. The difficulty of each of the coordination tasks was estimated based on the degree of dispersion of the different answers given by the players reflected by the CI. The classification of the spatial distance between each pair of individual brain patterns, analyzed using the random walk algorithm, was used to predict whether successful coordination occurred or not. The classification performance was obtained for each game individually, i.e., for each different complexity level, via recall and precision indices. The results showed that the classifier performance depended on the CI, that is, on the level of coordination difficulty. These results, along with possibilities for future research, are discussed.


Subject(s)
Electroencephalography , Machine Learning , Humans , Algorithms , Brain , Semantics
7.
Front Hum Neurosci ; 17: 1249978, 2023.
Article in English | MEDLINE | ID: mdl-37727864

ABSTRACT

Understanding the interplay between attachment style, emotional processing, and neural responses is crucial for comprehending the diverse ways individuals function socially and emotionally. While previous research has contributed to our knowledge of how attachment style influences emotional processing, there is still a gap in the literature when it comes to investigating emotional feedback using event-related potentials (ERPs) within a cognitive framework. This study aims to address this gap by examining the effects of attachment style and feedback valence on ERP components, specifically focusing on the P200 and P400. The findings reveal significant effects of attachment style and feedback valence on both components. In insecure attachment styles, noticeable shifts in relative energy are observed during the transition from negative to positive feedback for both the P200 and P400. Conversely, individuals with secure attachment styles exhibit minimal to moderate variations in relative energy, consistently maintaining a lower P200 energy level. Additionally, both secure and insecure individuals demonstrate heightened intensity in the P400 component in response to positive feedback. These findings underscore the influential role of attachment style in shaping emotional reactivity and regulation, emphasizing the significance of attachment theory in understanding individual differences in social and emotional functioning. This study provides novel insights into the neural mechanisms underlying the influence of attachment style on emotional processing within the context of cognitive task performance. Future research should consider diverse participant samples, employ objective measures of attachment, and utilize longitudinal designs to further explore the neural processes associated with attachment.

8.
PLoS One ; 18(7): e0288822, 2023.
Article in English | MEDLINE | ID: mdl-37471403

ABSTRACT

In this paper we present a method to examine the synchrony between brains without the need to carry out simultaneous recordings of EEG signals from two people which is the essence of hyper-scanning studies. We used anonymous random walks to spatially encode the entire graph structure without relying on data at the level of individual nodes. Anonymous random walks enabled us to encapsulate the structure of a graph regardless of the specific node labels. That is, random walks that visited different nodes in the same sequence resulted in the same anonymous walk encoding. We have analyzed the EEG data offline and matched each possible pair of players from the entire pool of players that performed a series of tacit coordination games. Specifically, we compared between two network patterns associated with each possible pair of players. By using classification performed on the spatial distance between each pair of individual brain patterns, analyzed by the random walk algorithm, we tried to predict whether each possible pair of players has managed to converge on the same solution in each tacit coordination game. Specifically, the distance between a pair of vector embeddings, each associated with one of the players, was used as input for a classification model for the purpose of predicting whether the two corresponding players have managed to achieve successful coordination. Our model reached a classification accuracy of ~85%.


Subject(s)
Algorithms , Electroencephalography , Humans
9.
Sensors (Basel) ; 22(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080985

ABSTRACT

Achieving successful human-agent collaboration in the context of smart environments requires the modeling of human behavior for predicting people's decisions. The goal of the current study was to utilize the TBR and the Alpha band as electrophysiological features that will discriminate between different tasks, each associated with a different depth of reasoning. To that end, we monitored the modulations of the TBR and Alpha, while participants were engaged in performing two cognitive tasks: picking and coordination. In the picking condition (low depth of processing), participants were requested to freely choose a single word out of a string of four words. In the coordination condition (high depth of processing), participants were asked to try and select the same word as an unknown partner that was assigned to them. We performed two types of analyses, one that considers the time factor (i.e., observing dynamic changes across trials) and the other that does not. When the temporal factor was not considered, only Beta was sensitive to the difference between picking and coordination. However, when the temporal factor was included, a transition occurred between cognitive effort and fatigue in the middle stage of the experiment. These results highlight the importance of monitoring the electrophysiological indices, as different factors such as fatigue might affect the instantaneous relative weight of intuitive and deliberate modes of reasoning. Thus, monitoring the response of the human-agent across time in human-agent interactions might turn out to be crucial for smooth coordination in the context of human-computer interaction.


Subject(s)
Electroencephalography , Fatigue , Electroencephalography/methods , Humans , Monitoring, Physiologic
10.
Brain Inform ; 9(1): 4, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35122193

ABSTRACT

BACKGROUND: Previous experiments in tacit coordination games hinted that some people are more successful in achieving coordination than others, although the variability in this ability has not yet been examined before. With that in mind, the overarching aim of our study is to model and describe the variability in human decision-making behavior in the context of tacit coordination games. METHODS: In this study, we conducted a large-scale experiment to collect behavioral data, characterized the distribution of tacit coordination ability, and modeled the decision-making behavior of players. First, we measured the multimodality in the data and described it by using a Gaussian mixture model. Then, using multivariate linear regression and dimensionality reduction (PCA), we have constructed a model linking between individual strategic profiles of players and their coordination ability. Finally, we validated the predictive performance of the model by using external validation. RESULTS: We demonstrated that coordination ability is best described by a multimodal distribution corresponding to the levels of coordination ability and that there is a significant relationship between the player's strategic profile and their coordination ability. External validation determined that our predictive model is robust. CONCLUSIONS: The study provides insight into the amount of variability that exists in individual tacit coordination ability as well as in individual strategic profiles and shows that both are quite diverse. Our findings may facilitate the construction of improved algorithms for human-machine interaction in diverse contexts. Additional avenues for future research are discussed.

11.
Sensors (Basel) ; 22(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35062438

ABSTRACT

Previously, it was shown that some people are better coordinators than others; however, the relative weight of intuitive (system 1) versus deliberate (system 2) modes of thinking in tacit coordination tasks is still not resolved. To address this question, we have extracted an electrophysiological index, the theta-beta ratio (TBR), from the Electroencephalography (EEG) recorded from participants while they were engaged in a semantic coordination task. Results have shown that individual coordination ability, game difficulty and response time are each positively correlated with cognitive load. These results suggest that better coordinators rely more on complex thought process and on more deliberate thinking while coordinating. The model we have presented may be used for the assessment of the depth of reasoning individuals engage in when facing different tasks requiring different degrees of allocation of resources. The findings as well as future research directions are discussed.


Subject(s)
Electroencephalography , Problem Solving , Cognition , Humans , Reaction Time
12.
Sensors (Basel) ; 21(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34883911

ABSTRACT

Tacit coordination games are games in which communication between the players is not allowed or not possible. In these games, the more salient solutions, that are often perceived as more prominent, are referred to as focal points. The level-k model states that players' decisions in tacit coordination games are a consequence of applying different decision rules at different depths of reasoning (level-k). A player at Lk=0 will randomly pick a solution, whereas a Lk≥1 player will apply their strategy based on their beliefs regarding the actions of the other players. The goal of this study was to examine, for the first time, the neural correlates of different reasoning levels in tacit coordination games. To that end, we have designed a combined behavioral-electrophysiological study with 3 different conditions, each resembling a different depth reasoning state: (1) resting state, (2) picking, and (3) coordination. By utilizing transfer learning and deep learning, we were able to achieve a precision of almost 100% (99.49%) for the resting-state condition, while for the picking and coordination conditions, the precision was 69.53% and 72.44%, respectively. The application of these findings and related future research options are discussed.


Subject(s)
Communication , Problem Solving , Electroencephalography , Machine Learning
13.
Sensors (Basel) ; 20(24)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302476

ABSTRACT

In recent years collaborative robots have become major market drivers in industry 5.0, which aims to incorporate them alongside humans in a wide array of settings ranging from welding to rehabilitation. Improving human-machine collaboration entails using computational algorithms that will save processing as well as communication cost. In this study we have constructed an agent that can choose when to cooperate using an optimal strategy. The agent was designed to operate in the context of divergent interest tacit coordination games in which communication between the players is not possible and the payoff is not symmetric. The agent's model was based on a behavioral model that can predict the probability of a player converging on prominent solutions with salient features (e.g., focal points) based on the player's Social Value Orientation (SVO) and the specific game features. The SVO theory pertains to the preferences of decision makers when allocating joint resources between themselves and another player in the context of behavioral game theory. The agent selected stochastically between one of two possible policies, a greedy or a cooperative policy, based on the probability of a player to converge on a focal point. The distribution of the number of points obtained by the autonomous agent incorporating the SVO in the model was better than the results obtained by the human players who played against each other (i.e., the distribution associated with the agent had a higher mean value). Moreover, the distribution of points gained by the agent was better than any of the separate strategies the agent could choose from, namely, always choosing a greedy or a focal point solution. To the best of our knowledge, this is the first attempt to construct an intelligent agent that maximizes its utility by incorporating the belief system of the player in the context of tacit bargaining. This reward-maximizing strategy selection process based on the SVO can also be potentially applied in other human-machine contexts, including multiagent systems.

14.
PLoS One ; 15(2): e0226929, 2020.
Article in English | MEDLINE | ID: mdl-32017778

ABSTRACT

The effect of culture on strategic interaction has been widely explored. However, the effect of the cultural background on focal point selection in tacit coordination games has not yet been examined. To accomplish this goal, in this study we have focused on the individual level of analysis. That is, we constructed a strategic profile to model the behavior of each individual player and then used unsupervised learning methods on the individual data points. We have chosen to examine two groups of participants, Israelis (ICB) and Chinese (CCB), each belonging to a different cultural background representing individualist and collectivist societies, respectively. Clustering the individual strategic profiles has allowed us to gain further insights regarding the differences between the behavioral strategies of each cultural group. The results of this study demonstrate that the cultural background has a profound effect on the strategic profile and on the ability to succeed in tacit coordination games. Moreover, the current study emphasizes the importance of relying on the individual level of analysis and not only on the group level of analysis. The implications of these results and potential future studies are discussed.


Subject(s)
Cross-Cultural Comparison , Culture , Social Behavior , Adult , China , Female , Humans , Individuality , Israel , Male , Students , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...