Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Gene Ther ; 30(9): 1274-1284, 2023 09.
Article in English | MEDLINE | ID: mdl-37386121

ABSTRACT

Tri methylguanosine synthase 1 (TGS1) is the enzyme that hyper methylates the hallmark 7-methyl-guanosine cap (m7G-cap) appended to the transcription start site of RNAs. The m7G-cap and the eIF4E-cap binding protein guide canonical cap-dependent translation of mRNAs, whereas hyper methylated cap, m2,2,7G-cap (TMG) lacks adequate eIF4E affinity and licenses entry into a different translation initiation pathway. The potential role for TGS1 and TMG-capped mRNA in neoplastic growth is unknown. Canine sarcoma has high translational value to the human disease. Cumulative downregulation of protein synthesis in osteosarcoma OSCA-40 was achieved cooperatively by siTGS1 and Torin-1. Torin-1 inhibited the proliferation of three canine sarcoma explants in a reversible manner that was eliminated by siRNA-downregulation of TGS1. TGS1 failure prevented the anchorage-independent growth of osteo- and hemangio-sarcomas and curtailed sarcoma recovery from mTOR inhibition. RNA immunoprecipitation studies identified TMG-capped mRNAs encoding TGS1, DHX9 and JUND. TMG-tgs1 transcripts were downregulated by leptomycin B and TGS1 failure was compensated by eIF4E mRNP-dependent tgs1 mRNA translation affected by mTOR. The evidence documents TMG-capped mRNAs are hallmarks of the investigated neoplasms and synergy between TGS1 specialized translation and canonical translation is involved in sarcoma recovery from mTOR inhibition. Therapeutic targeting of TGS1 activity in cancer is ripe for future exploration.


Subject(s)
Eukaryotic Initiation Factor-4E , Sarcoma , Animals , Dogs , Humans , Eukaryotic Initiation Factor-4E/genetics , RNA, Messenger/genetics , RNA , Guanosine/metabolism , TOR Serine-Threonine Kinases/metabolism , Sarcoma/genetics , RNA Caps/genetics
2.
Viruses ; 14(5)2022 04 29.
Article in English | MEDLINE | ID: mdl-35632676

ABSTRACT

The acquisition of m7G-cap-binding proteins is now recognized as a major variable driving the form and function of host RNAs. This manuscript compares the 5'-cap-RNA binding proteins that engage HIV-1 precursor RNAs, host mRNAs, small nuclear (sn)- and small nucleolar (sno) RNAs and sort into disparate RNA-fate pathways. Before completion of the transcription cycle, the transcription start site of nascent class II RNAs is appended to a non-templated guanosine that is methylated (m7G-cap) and bound by hetero-dimeric CBP80-CBP20 cap binding complex (CBC). The CBC is a nexus for the co-transcriptional processing of precursor RNAs to mRNAs and the snRNA and snoRNA of spliceosomal and ribosomal ribonucleoproteins (RNPs). Just as sn/sno-RNAs experience hyper-methylation of m7G-cap to trimethylguanosine (TMG)-cap, so do select HIV RNAs and an emerging cohort of mRNAs. TMG-cap is blocked from Watson:Crick base pairing and disqualified from participating in secondary structure. The HIV TMG-cap has been shown to license select viral transcripts for specialized cap-dependent translation initiation without eIF4E that is dependent upon CBP80/NCBP3. The exceptional activity of HIV precursor RNAs secures their access to maturation pathways of sn/snoRNAs, canonical and non-canonical host mRNAs in proper stoichiometry to execute the retroviral replication cycle.


Subject(s)
HIV Infections , HIV-1 , HIV-1/genetics , HIV-1/metabolism , Humans , Methylation , RNA Caps/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Viruses ; 14(4)2022 03 25.
Article in English | MEDLINE | ID: mdl-35458413

ABSTRACT

Since the onset of the HIV-1/AIDS epidemic in 1981, 75 million people have been infected with the virus, and the disease remains a public health crisis worldwide. Circular RNAs (circRNAs) are derived from excised exons and introns during backsplicing, a form of alternative splicing. The relevance of unconventional, non-capped, and non-poly(A) transcripts to transcriptomics studies remains to be routinely investigated. Knowledge gaps to be filled are the interface between host-encoded circRNAs and viral replication in chronically progressed patients and upon treatment with antiviral drugs. We implemented a bioinformatic pipeline and repurpose publicly archived RNA sequence reads from the blood of 19 HIV-1-positive patients that previously compared transcriptomes during viremia and viremia suppression by antiretroviral therapy (ART). The in silico analysis identified viremic patients' circRNA that became undetectable after ART. The circRNAs originated from a subset of host genes enriched in the HDAC biological pathway. These circRNAs and parental mRNAs held in common a small collection of miRNA response elements (MREs), some of which were present in HIV-1 mRNAs. The function of the MRE-containing target mRNA enriched the RNA polymerase II GO pathway. To visualize the interplay between individual circRNA-miRNA-target mRNA, important for HIV-1 and potentially other diseases, an Interactive Circos tool was developed to efficiently parse the intricately competing endogenous network of circRNA-miRNA-mRNA interactions originating from seven circRNA singled out in viremic versus non-viremic patients. The combined downregulation of the identified circRNAs warrants investigation as a novel antiviral targeting strategy.


Subject(s)
HIV Infections , HIV-1 , MicroRNAs , RNA, Circular , Viremia , Gene Expression Profiling , Gene Regulatory Networks , HIV Infections/drug therapy , HIV Seropositivity , HIV-1/genetics , HIV-1/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Viremia/genetics , Viremia/metabolism
4.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34949712

ABSTRACT

Appended to the 5' end of nascent RNA polymerase II transcripts is 7-methyl guanosine (m7G-cap) that engages nuclear cap-binding complex (CBC) to facilitate messenger RNA (mRNA) maturation. Mature mRNAs exchange CBC for eIF4E, the rate-limiting translation factor that is controlled through mTOR. Experiments in immune cells have now documented HIV-1 incompletely processed transcripts exhibited hypermethylated m7G-cap and that the down-regulation of the trimethylguanosine synthetase-1-reduced HIV-1 infectivity and virion protein synthesis by several orders of magnitude. HIV-1 cap hypermethylation required nuclear RNA helicase A (RHA)/DHX9 interaction with the shape of the 5' untranslated region (UTR) primer binding site (PBS) segment. Down-regulation of RHA or the anomalous shape of the PBS segment abrogated hypermethylated caps and derepressed eIF4E binding for virion protein translation during global down-regulation of host translation. mTOR inhibition was detrimental to HIV-1 proliferation and attenuated Tat, Rev, and Nef synthesis. This study identified mutually exclusive translation pathways and the calibration of virion structural/accessory protein synthesis with de novo synthesis of the viral regulatory proteins. The hypermethylation of select, viral mRNA resulted in CBC exchange to heterodimeric CBP80/NCBP3 that expanded the functional capacity of HIV-1 in immune cells.


Subject(s)
Guanosine/metabolism , HIV-1/metabolism , Host Microbial Interactions/physiology , TOR Serine-Threonine Kinases/metabolism , 5' Untranslated Regions , Binding Sites , DEAD-box RNA Helicases , Eukaryotic Initiation Factor-4E/metabolism , Guanosine/analogs & derivatives , Humans , Licensure , Methylation , Methyltransferases/metabolism , Neoplasm Proteins , RNA Caps , RNA, Messenger/metabolism , RNA, Viral/genetics , Virion/metabolism
5.
Front Genet ; 11: 999, 2020.
Article in English | MEDLINE | ID: mdl-33193584

ABSTRACT

Derived from linear (parental) precursor mRNA, circRNA are recycled exons and introns whose ends are ligated. By titrating microRNAs and RNA binding proteins, circRNA interconnect networks of competing endogenous RNAs. Without altering chromosomal DNA, circRNA regulates skeletal muscle development and proliferation, lactation, ovulation, brain development, and responses to infections and metabolic stress. This review integrates emerging knowledge of circRNA activity coming from genome-wide characterizations in many clades of animals. circRNA research addresses one of the main pillars of the One Health vision - to improve the health and productivity of food animals and generate translational knowledge in animal species.

SELECTION OF CITATIONS
SEARCH DETAIL
...