Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37961380

ABSTRACT

The mechanisms of bacterial killing by neutrophil extracellular traps (NETs) are unclear. DNA, the largest component of NETs is believed to merely be a scaffold with minimal antimicrobial activity through the charge of the backbone. Here, we report that NETs DNA is beyond a scaffold and produces hydroxyl free radicals through the spatially concentrated G-quadruplex/hemin DNAzyme complexes, driving bactericidal effects. Immunofluorescence staining showed colocalization of G-quadruplex and hemin in extruded NETs DNA, and Amplex UltraRed assay portrayed its peroxidase activity. Proximity labeling of bacteria revealed localized concentration of radicals resulting from NETs bacterial trapping. Ex vivo bactericidal assays revealed that G-quadruplex/hemin DNAzyme is the primary driver of bactericidal activity in NETs. NETs are DNAzymes that may have important biological consequences.

2.
Microbiol Spectr ; 10(6): e0230522, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36250865

ABSTRACT

Clinicians in the emergency department (ED) face challenges in concurrently assessing patients with suspected COVID-19 infection, detecting bacterial coinfection, and determining illness severity since current practices require separate workflows. Here, we explore the accuracy of the IMX-BVN-3/IMX-SEV-3 29 mRNA host response classifiers in simultaneously detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and bacterial coinfections and predicting clinical severity of COVID-19. A total of 161 patients with PCR-confirmed COVID-19 (52.2% female; median age, 50.0 years; 51% hospitalized; 5.6% deaths) were enrolled at the Stanford Hospital ED. RNA was extracted (2.5 mL whole blood in PAXgene blood RNA), and 29 host mRNAs in response to the infection were quantified using Nanostring nCounter. The IMX-BVN-3 classifier identified SARS-CoV-2 infection in 151 patients with a sensitivity of 93.8%. Six of 10 patients undetected by the classifier had positive COVID tests more than 9 days prior to enrollment, and the remaining patients oscillated between positive and negative results in subsequent tests. The classifier also predicted that 6 (3.7%) patients had a bacterial coinfection. Clinical adjudication confirmed that 5/6 (83.3%) of the patients had bacterial infections, i.e., Clostridioides difficile colitis (n = 1), urinary tract infection (n = 1), and clinically diagnosed bacterial infections (n = 3), for a specificity of 99.4%. Two of 101 (2.8%) patients in the IMX-SEV-3 "Low" severity classification and 7/60 (11.7%) in the "Moderate" severity classification died within 30 days of enrollment. IMX-BVN-3/IMX-SEV-3 classifiers accurately identified patients with COVID-19 and bacterial coinfections and predicted patients' risk of death. A point-of-care version of these classifiers, under development, could improve ED patient management, including more accurate treatment decisions and optimized resource utilization. IMPORTANCE We assay the utility of the single-test IMX-BVN-3/IMX-SEV-3 classifiers that require just 2.5 mL of patient blood in concurrently detecting viral and bacterial infections as well as predicting the severity and 30-day outcome from the infection. A point-of-care device, in development, will circumvent the need for blood culturing and drastically reduce the time needed to detect an infection. This will negate the need for empirical use of broad-spectrum antibiotics and allow for antibiotic use stewardship. Additionally, accurate classification of the severity of infection and the prediction of 30-day severe outcomes will allow for appropriate allocation of hospital resources.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Humans , Female , Middle Aged , Male , COVID-19/diagnosis , COVID-19/microbiology , SARS-CoV-2/genetics , Coinfection/diagnosis , Coinfection/microbiology , RNA, Messenger , Bacteria , Bacterial Infections/diagnosis , Bacterial Infections/microbiology
3.
medRxiv ; 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35313598

ABSTRACT

Objective: Clinicians in the emergency department (ED) face challenges in concurrently assessing patients with suspected COVID-19 infection, detecting bacterial co-infection, and determining illness severity since current practices require separate workflows. Here we explore the accuracy of the IMX-BVN-3/IMX-SEV-3 29 mRNA host response classifiers in simultaneously detecting SARS-CoV-2 infection, bacterial co-infections, and predicting clinical severity of COVID-19. Methods: 161 patients with PCR-confirmed COVID-19 (52.2% female, median age 50.0 years, 51% hospitalized, 5.6% deaths) were enrolled at the Stanford Hospital ED. RNA was extracted (2.5 mL whole blood in PAXgene Blood RNA) and 29 host mRNAs in response to the infection were quantified using Nanostring nCounter. Results: The IMX-BVN-3 classifier identified SARS-CoV-2 infection in 151 patients with a sensitivity of 93.8%. Six of 10 patients undetected by the classifier had positive COVID tests more than 9 days prior to enrolment and the remaining oscillated between positive and negative results in subsequent tests. The classifier also predicted that 6 (3.7%) patients had a bacterial co-infection. Clinical adjudication confirmed that 5/6 (83.3%) of the patients had bacterial infections, i.e. Clostridioides difficile colitis (n=1), urinary tract infection (n=1), and clinically diagnosed bacterial infections (n=3) for a specificity of 99.4%. 2/101 (2.8%) patients in the IMX-SEV-3 Low and 7/60 (11.7%) in the Moderate severity classifications died within thirty days of enrollment. Conclusions: IMX-BVN-3/IMX-SEV-3 classifiers accurately identified patients with COVID-19, bacterial co-infections, and predicted patients’ risk of death. A point-of-care version of these classifiers, under development, could improve ED patient management including more accurate treatment decisions and optimized resource utilization.

4.
Clin Infect Dis ; 74(2): 218-226, 2022 01 29.
Article in English | MEDLINE | ID: mdl-33949665

ABSTRACT

BACKGROUND: The determinants of coronavirus disease 2019 (COVID-19) disease severity and extrapulmonary complications (EPCs) are poorly understood. We characterized relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNAemia and disease severity, clinical deterioration, and specific EPCs. METHODS: We used quantitative and digital polymerase chain reaction (qPCR and dPCR) to quantify SARS-CoV-2 RNA from plasma in 191 patients presenting to the emergency department with COVID-19. We recorded patient symptoms, laboratory markers, and clinical outcomes, with a focus on oxygen requirements over time. We collected longitudinal plasma samples from a subset of patients. We characterized the role of RNAemia in predicting clinical severity and EPCs using elastic net regression. RESULTS: Of SARS-CoV-2-positive patients, 23.0% (44 of 191) had viral RNA detected in plasma by dPCR, compared with 1.4% (2 of 147) by qPCR. Most patients with serial measurements had undetectable RNAemia within 10 days of symptom onset, reached maximum clinical severity within 16 days, and symptom resolution within 33 days. Initially RNAemic patients were more likely to manifest severe disease (odds ratio, 6.72 [95% confidence interval, 2.45-19.79]), worsening of disease severity (2.43 [1.07-5.38]), and EPCs (2.81 [1.26-6.36]). RNA loads were correlated with maximum severity (r = 0.47 [95% confidence interval, .20-.67]). CONCLUSIONS: dPCR is more sensitive than qPCR for the detection of SARS-CoV-2 RNAemia, which is a robust predictor of eventual COVID-19 severity and oxygen requirements, as well as EPCs. Because many COVID-19 therapies are initiated on the basis of oxygen requirements, RNAemia on presentation might serve to direct early initiation of appropriate therapies for the patients most likely to deteriorate.

5.
medRxiv ; 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33398290

ABSTRACT

Background: The determinants of COVID-19 disease severity and extrapulmonary complications (EPCs) are poorly understood. We characterise the relationships between SARS-CoV-2 RNAaemia and disease severity, clinical deterioration, and specific EPCs. Methods: We used quantitative (qPCR) and digital (dPCR) PCR to quantify SARS-CoV-2 RNA from nasopharyngeal swabs and plasma in 191 patients presenting to the Emergency Department (ED) with COVID-19. We recorded patient symptoms, laboratory markers, and clinical outcomes, with a focus on oxygen requirements over time. We collected longitudinal plasma samples from a subset of patients. We characterised the role of RNAaemia in predicting clinical severity and EPCs using elastic net regression. Findings: 23·0% (44/191) of SARS-CoV-2 positive patients had viral RNA detected in plasma by dPCR, compared to 1·4% (2/147) by qPCR. Most patients with serial measurements had undetectable RNAaemia 10 days after onset of symptoms, but took 16 days to reach maximum severity, and 33 days for symptoms to resolve. Initially RNAaemic patients were more likely to manifest severe disease (OR 6·72 [95% CI, 2·45 - 19·79]), worsening of disease severity (OR 2·43 [95% CI, 1·07 - 5·38]), and EPCs (OR 2·81 [95% CI, 1·26 - 6·36]). RNA load correlated with maximum severity (r = 0·47 [95% CI, 0·20 - 0·67]). Interpretation: dPCR is more sensitive than qPCR for the detection of SARS-CoV-2 RNAaemia, which is a robust predictor of eventual COVID-19 severity and oxygen requirements, as well as EPCs. Since many COVID-19 therapies are initiated on the basis of oxygen requirements, RNAaemia on presentation might serve to direct early initiation of appropriate therapies for the patients most likely to deteriorate.

6.
Biotechnol Bioeng ; 116(3): 526-535, 2019 03.
Article in English | MEDLINE | ID: mdl-30536855

ABSTRACT

The Gp2 domain is a 45 amino-acid scaffold that has been evolved for specific, high-affinity binding towards multiple targets and was proven useful in molecular imaging and biological antagonism. It was hypothesized that Gp2 may benefit from increased hydrophilicity for improved physiological distribution as well as for physicochemical robustness. We identified seven exposed hydrophobic sites for hydrophilic mutations and experimentally evaluated single mutants, which yielded six mutations that do not substantially hinder expression, binding affinity or specificity (to epidermal growth factor receptor), and thermal stability. Eight combinations of these mutations improved hydrophilicity relative to the parental Gp2 clone as assessed by reverse-phase high-performance liquid chromatography (p < 0.05). Secondary structures and refolding abilities of the selected single mutants and all multimutants were unchanged relative to the parental ligand. A variant with five hydrophobic-to-hydrophilic mutations was identified with enhanced solubility as well as reasonable binding affinity ( K d = 53-63 nM), recombinant yield (1.3 ± 0.8 mg/L), and thermal stability ( T m = 53 ± 3°C). An alternative variant with a cluster of three leucine-to-hydrophilic mutations was identified with increased solubility, nominally increased binding affinity ( K d = 13-28 nM) and reasonable thermal stability ( T m = 54.0 ± 0.6°C) but reduced yield (0.4 ± 0.3 mg/L). In addition, a ≥7°C increase in the midpoint of thermal denaturation was observed in one of the single mutants (T21N). These mutants highlight the physicochemical tradeoffs associated with hydrophobic-to-hydrophilic mutation within a small protein, improve the solubility and hydrophilicity of an existent molecular imaging probe, and provide a more hydrophilic starting point for discovery of new Gp2 ligands towards additional targets.


Subject(s)
Mutagenesis, Site-Directed/methods , Protein Domains/genetics , Recombinant Proteins , Cell Line, Tumor , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Escherichia coli , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Mutation/genetics , Protein Binding , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solubility
7.
Mol Pharm ; 13(11): 3747-3755, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27696863

ABSTRACT

This purpose of this study is to determine the efficacy of a 45-amino acid Gp2 domain, engineered to bind to epidermal growth factor receptor (EGFR), as a positron emission tomography (PET) probe of EGFR in a xenograft mouse model. The EGFR-targeted Gp2 (Gp2-EGFR) and a nonbinding control were site-specifically labeled with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. Binding affinity was tested toward human EGFR and mouse EGFR. Biological activity on downstream EGFR signaling was examined in cell culture. DOTA-Gp2 molecules were labeled with 64Cu and intravenously injected (0.6-2.3 MBq) into mice bearing EGFRhigh (n = 7) and EGFRlow (n = 4) xenografted tumors. PET/computed tomography (CT) images were acquired at 45 min, 2 h, and 24 h. Dynamic PET (25 min) was also acquired. Tomography results were verified with gamma counting of resected tissues. Two-tailed t tests with unequal variances provided statistical comparison. DOTA-Gp2-EGFR bound strongly to human (KD = 7 ± 5 nM) and murine (KD = 29 ± 6 nM) EGFR, and nontargeted Gp2 had no detectable binding. Gp2-EGFR did not agonize EGFR nor antagonize EGF-EGFR. 64Cu-Gp2-EGFR tracer effectively localized to EGFRhigh tumors at 45 min (3.2 ± 0.5%ID/g). High specificity was observed with significantly lower uptake in EGFRlow tumors (0.9 ± 0.3%ID/g, p < 0.001), high tumor-to-background ratios (11 ± 6 tumor/muscle, p < 0.001). Nontargeted Gp2 tracer had low uptake in EGFRhigh tumors (0.5 ± 0.3%ID/g, p < 0.001). Similar data was observed at 2 h, and tumor signal was retained at 24 h (2.9 ± 0.3%ID/g). An engineered Gp2 PET imaging probe exhibited low background and target-specific EGFRhigh tumor uptake at 45 min, with tumor signal retained at 24 h postinjection, and compared favorably with published EGFR PET probes for alternative protein scaffolds. These beneficial in vivo characteristics, combined with thermal stability, efficient evolution, and small size of the Gp2 domain validate its use as a future class of molecular imaging agents.


Subject(s)
Copper Radioisotopes/chemistry , ErbB Receptors/chemistry , Positron-Emission Tomography/methods , Animals , Blotting, Western , Cell Line, Tumor , Chromatography, Gel , Chromatography, Thin Layer , Female , Flow Cytometry , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Mice , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...