Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Skelet Muscle ; 2(1): 2, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22257771

ABSTRACT

BACKGROUND: Muscle atrophy associated with various pathophysiological conditions represents a major health problem, because of its contribution to the deterioration of patient status and its effect on mortality. Although the involvement of pro-inflammatory cytokines in this process is well recognized, the role of sphingolipid metabolism alterations induced by the cytokines has received little attention. RESULTS: We addressed this question both in vitro using differentiated myotubes treated with TNF-α, and in vivo in a murine model of tumor-induced cachexia. Myotube atrophy induced by TNF-α was accompanied by a substantial increase in cell ceramide levels, and could be mimicked by the addition of exogenous ceramides. It could be prevented by the addition of ceramide-synthesis inhibitors that targeted either the de novo pathway (myriocin), or the sphingomyelinases (GW4869 and 3-O-methylsphingomyelin). In the presence of TNF-α, ceramide-synthesis inhibitors significantly increased protein synthesis and decreased proteolysis. In parallel, they lowered the expression of both the Atrogin-1 and LC3b genes, involved in muscle protein degradation by proteasome and in autophagic proteolysis, respectively, and increased the proportion of inactive, phosphorylated Foxo3 transcription factor. Furthermore, these inhibitors increased the expression and/or phosphorylation levels of key factors regulating protein metabolism, including phospholipase D, an activator of mammalian target of rapamycin (mTOR), and the mTOR substrates S6K1 and Akt. In vivo, C26 carcinoma implantation induced a substantial increase in muscle ceramide, together with drastic muscle atrophy. Treatment of the animals with myriocin reduced the expression of the atrogenes Foxo3 and Atrogin-1, and partially protected muscle tissue from atrophy. CONCLUSIONS: Ceramide accumulation induced by TNF-α or tumor development participates in the mechanism of muscle-cell atrophy, and sphingolipid metabolism is a logical target for pharmacological or nutritional interventions aiming at preserving muscle mass in pathological situations.

2.
Biomarkers ; 14(4): 226-34, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19489684

ABSTRACT

Gastric cancer (GC) shows a familiar predisposition which is largely unexplained. In this study the hypothesis that radiation sensitivity is implicated in the familiar predisposition to GC was investigated by means of the cytokinesis-block micronucleus assay. Data indicate that a family history of GC is not associated with any of the biomarkers investigated and does not interact with the demographic variables considered. When study subjects were dichotomized around the median age, a significant prevalence of micronuclei was observed in older subjects. Age and both spontaneous and radiation-induced micronuclei were linearly correlated. The effect of age was not modified by gender or smoking habits.


Subject(s)
Chromosomal Instability/radiation effects , Stomach Neoplasms/genetics , Age Factors , Aged , Biomarkers/analysis , Family Health , Female , Humans , Male , Micronuclei, Chromosome-Defective/radiation effects , Micronucleus Tests , Middle Aged , Smoking/genetics , Stomach Neoplasms/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...