Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 131(3): 1080-1087, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34323592

ABSTRACT

Cephalad fluid shifts in space have been hypothesized to cause the spaceflight-associated neuro-ocular syndrome (SANS) by increasing the intracranial-ocular translaminal pressure gradient. Lower body negative pressure (LBNP) can be used to shift upper-body blood and other fluids toward the legs during spaceflight. We hypothesized that microgravity would increase jugular vein volume (JVvol), portal vein cross-sectional area (PV), and intracranial venous blood velocity (MCV) and that LBNP application would return these variables toward preflight levels. Data were collected from 14 subjects (11 males) before and during long-duration International Space Station (ISS) spaceflights. Ultrasound measures of JVvol, PV, and MCV were acquired while seated and supine before flight and early during spaceflight at day 45 (FD45) and late at day 150 (FD150) with and without LBNP. JVvol increased from preflight supine and seated postures (46 ± 48% and 646 ± 595% on FD45 and 43 ± 43% and 702 ± 631% on FD150, P < 0.05), MCV increased from preflight supine (44 ± 31% on FD45 and 115 ± 116% on FD150, P < 0.05), and PV increased from preflight supine and seated (51 ± 56% on FD45 and 100 ± 74% on FD150, P < 0.05). Inflight LBNP of -25 mmHg restored JVvol and MCV to preflight supine level and PV to preflight seated level. Elevated JVvol confirms the sustained neck-head blood engorgement inflight, whereas increased PV area supports the fluid shift at the splanchnic level. Also, MCV increased potentially due to reduced lumen diameter. LBNP, returning variables to preflight levels, may be an effective countermeasure.NEW & NOTEWORTHY Microgravity-induced fluid shifts markedly enlarge jugular and portal veins and increase cerebral vein velocity. These findings demonstrate a marked flow engorgement at neck and splanchnic levels and may suggest compression of the cerebral veins by the brain tissue in space. LBNP (-25 mmHg for 30 min) returns these changes to preflight levels and, thus, reduces the associated flow and tissue disturbances.


Subject(s)
Cerebral Veins , Space Flight , Weightlessness , Humans , Lower Body Negative Pressure , Male , Portal Vein
2.
Eur J Appl Physiol ; 121(3): 839-848, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33386985

ABSTRACT

PURPOSE: Orthostatic hypotension, leading to cerebral hypoperfusion, can result in postural instability and falls in older adults. We determined the efficacy of a novel, intermittent pneumatic compression system, applying pressure around the lower legs, as a countermeasure against orthostatic stress in older adults. METHODS: Data were collected from 13 adults (4 male) over 65 years of age. Non-invasive ultrasound measured middle cerebral artery blood velocity (MCAv) and finger photoplethysmography measured mean arterial blood pressure (MAP). Intermittent lower leg compression was applied in a peristaltic manner in the local diastolic phase of each cardiac cycle to optimize venous return during 1-min of seated rest and during a sit-to-stand transition to 1-min of quiet standing with compression initiated 15 s before transition. RESULTS: During seated rest, compression resulted in a 4.5 ± 6.5 mmHg increase in MAP, and 2.3 ± 2.1 cm/s increase in MCAv (p < 0.05). MAP and MCAv increased during the 15 s of applied compression before the posture transition (2.3 ± 7.2 mmHg and 2.1 ± 4.0 cm/s, respectively, p < 0.05) with main effects for both variables confirming continued benefit during the transition and quiet stand periods. CONCLUSIONS: Application of carefully timed, intermittent compression to the lower legs of older adults increased MAP and MCAv during seated rest and maintained an elevated MAP and MCAv during a transition to standing posture. Future research could assess the benefits of this technology for persons at risk for orthostatic hypotension on standing and while walking in an effort to reduce injurious, unexplained falls in older adults.


Subject(s)
Cerebrovascular Circulation/physiology , Leg/blood supply , Muscle, Skeletal/blood supply , Posture/physiology , Aged , Aged, 80 and over , Blood Flow Velocity , Female , Humans , Male , Middle Cerebral Artery/physiology , Muscle, Skeletal/physiology , Photoplethysmography , Regional Blood Flow , Standing Position
3.
J Appl Physiol (1985) ; 124(2): 302-311, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29122964

ABSTRACT

This study tested the hypothesis that intermittent compression of the lower limb would increase blood flow during exercise and postexercise recovery. Data were collected from 12 healthy individuals (8 men) who performed 3 min of standing plantar flexion exercise. The following three conditions were tested: no applied compression (NoComp), compression during the exercise period only (ExComp), and compression during 2 min of standing postexercise recovery. Doppler ultrasound was used to determine superficial femoral artery (SFA) blood flow responses. Mean arterial pressure (MAP) and cardiac stroke volume (SV) were assessed using finger photoplethysmography, with vascular conductance (VC) calculated as VC = SFA flow/MAP. Compared with the NoComp condition, compression resulted in increased MAP during exercise [+3.5 ± 4.1 mmHg (mean ± SD)] but not during postexercise recovery (+1.6 ± 5.9 mmHg). SV increased with compression during both exercise (+4.8 ± 5.1 ml) and recovery (+8.0 ± 6.6 ml) compared with NoComp. There was a greater increase in SFA flow with compression during exercise (+52.1 ± 57.2 ml/min) and during recovery (+58.6 ± 56.7 ml/min). VC immediately following exercise was also significantly greater in the ExComp condition compared with the NoComp condition (+0.57 ± 0.42 ml·min-1·mmHg-1), suggesting the observed increase in blood flow during exercise was in part because of changes in VC. Results from this study support the hypothesis that intermittent compression applied during exercise and recovery from exercise results in increased limb blood flow, potentially contributing to changes in exercise performance and recovery. NEW & NOTEWORTHY Blood flow to working skeletal muscle is achieved in part through the rhythmic actions of the skeletal muscle pump. This study demonstrated that the application of intermittent pneumatic compression during the diastolic phase of the cardiac cycle, to mimic the mechanical actions of the muscle pump, accentuates muscle blood flow during exercise and elevates blood flow during the postexercise recovery period. Intermittent compression during and after exercise might have implications for exercise performance and recovery.


Subject(s)
Exercise/physiology , Intermittent Pneumatic Compression Devices , Leg/blood supply , Adult , Diastole , Female , Healthy Volunteers , Humans , Male , Regional Blood Flow , Young Adult
4.
J Appl Physiol (1985) ; 114(6): 801-7, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23372147

ABSTRACT

Syncope from sustained orthostasis results from cerebral hypoperfusion associated with reductions in arterial pressure at the level of the brain (BPMCA) and reductions in arterial CO2 as reflected by end-tidal values (PetCO2). It was hypothesized that reductions in PetCO2 increase cerebrovascular tone before a drop in BPMCA that ultimately leads to syncope. Twelve men (21-42 yr of age) completed an orthostatic tolerance test consisting of head-up tilt and progressive lower body negative pressure to presyncope, before and after completing 5 days of continuous head-down bed rest (HDBR). Cerebral blood velocity (CBFV), BPMCA, and PetCO2 were continuously recorded throughout the test. Cerebrovascular indicators, cerebrovascular resistance, critical closing pressure (CrCP), and resistance area product (RAP), were calculated. Comparing from supine baseline to 6-10 min after the start of tilt, there were reductions in CBFV, PetCO2, BPMCA, and CrCP, an increase in RAP, and no change in cerebrovascular resistance index. Over the final 15 min before syncope in the pre-HDBR tests, CBFV and CrCP were significantly related to changes in PetCO2 (r = 0.69 ± 0.17 and r = 0.63 ± 0.20, respectively), and BPMCA, which was not reduced until the last minute of the test, was correlated with a reduction in RAP (r = 0.91 ± 0.09). Post-HDBR, tilt tolerance was markedly reduced, and changes in CBFV were dominated by a greater reduction in BPMCA with no relationships to PetCO2. Therefore, pre-HDBR, changes in PetCO2 with orthostasis contributed to increases in cerebrovascular tone and reductions in CBFV during the progression toward syncope, whereas, after 5 days of HDBR, orthostatic responses were dominated by changes in BPMCA.


Subject(s)
Blood Pressure , Carbon Dioxide/blood , Cerebral Arteries/physiopathology , Cerebrovascular Circulation , Orthostatic Intolerance/etiology , Syncope/etiology , Vasoconstriction , Adult , Biomarkers/blood , Blood Flow Velocity , Cerebral Arteries/diagnostic imaging , Humans , Lower Body Negative Pressure , Male , Orthostatic Intolerance/blood , Orthostatic Intolerance/diagnosis , Orthostatic Intolerance/physiopathology , Supine Position , Syncope/blood , Syncope/diagnosis , Syncope/physiopathology , Tilt-Table Test , Time Factors , Ultrasonography, Doppler, Transcranial , Vascular Resistance , Young Adult
5.
J Appl Physiol (1985) ; 113(3): 434-41, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22653986

ABSTRACT

This study tested the hypothesis that cardiovascular effects of sublingual nitroglycerin (NG) would be exaggerated after 56 days of 6° head-down bed rest (HDBR) in women, and that an aerobic and resistive exercise countermeasure (EX, n = 8) would reduce the effect compared with HDBR without exercise (CON, n = 7). Middle cerebral artery maximal blood flow velocity (CBFV), cardiac stroke volume (SV), and superficial femoral artery blood flow (Doppler ultrasound) were recorded at baseline rest and for 5 min following 0.3 mg sublingual NG. Post-HDBR, NG caused greater increases in heart rate (HR) in CON compared with EX (+24.9 ± 7.7 and +18.8 ± 6.6 beats/min, respectively, P < 0.0001). The increase in HR combined with reductions in SV to maintain cardiac output. Systolic, mean, and pulse pressures were reduced 5-10 mmHg by NG, but total peripheral resistance was only slightly reduced at 3 min after NG. Reductions in CBFV of -12.5 ± 3.8 cm/s were seen after NG, but a reduction in the Doppler resistance index suggested dilation of the middle cerebral artery with no differences after HDBR. The femoral artery dilated with NG and blood flow was reduced ∼50% with the appearance of large negative waves suggesting a marked increase in downstream resistance, but there were no effects of HDBR. In general, responses of women to NG were not altered by HDBR; the greater increase in HR in CON but not EX was probably a consequence of cardiovascular deconditioning. These results contrast with the hypothesis and a previous investigation of men after HDBR by revealing no change in cardiovascular responses to exogenous nitric oxide.


Subject(s)
Bed Rest , Blood Flow Velocity/drug effects , Nitroglycerin/administration & dosage , Stroke Volume/drug effects , Vasodilator Agents/administration & dosage , Administration, Sublingual , Adult , Blood Pressure/drug effects , Cardiovascular Deconditioning/drug effects , Female , Femoral Artery/diagnostic imaging , Femoral Artery/drug effects , Head-Down Tilt/physiology , Heart Rate/drug effects , Humans , Middle Cerebral Artery/diagnostic imaging , Middle Cerebral Artery/drug effects , Oxygen Consumption/drug effects , Resistance Training , Ultrasonography, Doppler , Vascular Resistance/drug effects , Weightlessness Countermeasures
6.
Am J Physiol Heart Circ Physiol ; 302(12): H2592-8, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22492717

ABSTRACT

Long duration habitation on the International Space Station (ISS) is associated with chronic elevations in arterial blood pressure in the brain compared with normal upright posture on Earth and elevated inspired CO(2). Although results from short-duration spaceflights suggested possibly improved cerebrovascular autoregulation, animal models provided evidence of structural and functional changes in cerebral vessels that might negatively impact autoregulation with longer periods in microgravity. Seven astronauts (1 woman) spent 147 ± 49 days on ISS. Preflight testing (30-60 days before launch) was compared with postflight testing on landing day (n = 4) or the morning 1 (n = 2) or 2 days (n = 1) after return to Earth. Arterial blood pressure at the level of the middle cerebral artery (BP(MCA)) and expired CO(2) were monitored along with transcranial Doppler ultrasound assessment of middle cerebral artery (MCA) blood flow velocity (CBFV). Cerebrovascular resistance index was calculated as (CVRi = BP(MCA)/CBFV). Cerebrovascular autoregulation and CO(2) reactivity were assessed in a supine position from an autoregressive moving average (ARMA) model of data obtained during a test where two breaths of 10% CO(2) were given four times during a 5-min period. CBFV and Doppler pulsatility index were reduced during -20 mmHg lower body negative pressure, with no differences pre- to postflight. The postflight indicator of dynamic autoregulation from the ARMA model revealed reduced gain for the CVRi response to BP(MCA) (P = 0.017). The postflight responses to CO(2) were reduced for CBFV (P = 0.056) and CVRi (P = 0.047). These results indicate that long duration missions on the ISS impaired dynamic cerebrovascular autoregulation and reduced cerebrovascular CO(2) reactivity.


Subject(s)
Astronauts , Blood Pressure/physiology , Carbon Dioxide/blood , Cerebrovascular Circulation/physiology , Homeostasis/physiology , Space Flight , Adult , Blood Flow Velocity/physiology , Female , Humans , Male , Middle Aged , Middle Cerebral Artery/diagnostic imaging , Middle Cerebral Artery/physiology , Ultrasonography
7.
J Gravit Physiol ; 14(1): P65-6, 2007 Jul.
Article in English | MEDLINE | ID: mdl-18372702

ABSTRACT

During the WISE-2005 study of 24 women, we observed a reduction (21.6 +/- 0.89%, mean +/- SEM) in cerebral blood flow velocity (CBV) measured by transcranial Doppler ultrasound, following 0.3 mg sublingual nitroglycerin (NG). In parallel, we observed quantitative reductions in leg blood flow (47.3 +/- 7.0%) and corresponding reductions in calculated conductance (Conductance = Femoral Flow / Mean Arterial Pressure; 45.7 +/- 7.2%). To determine if the reduction in CBV was the result of reduced cerebral blood flow or dilation of the middle cerebral artery (MCA), the change in CBV in the MCA was compared with changes in quantitative flow measured in the common carotid artery (CCA). The relationship between CBV and CCA blood flow was tested in five men and four women using hyper- and hypo-ventilation to manipulate arterial PCO2. Changes in CCA blood flow were positively correlated with changes in CBV (p<0.001). We then investigated the CBV and CCA flow responses to sublingual NG in an additional two men and six women. Concurrent with the reduction in CBV there was no change in blood flow through the CCA (p>0.05). These results indicate that the decrease in CBV observed in response to NG was probably the result of dilation of the MCA and that total cerebral blood flow was similar after administration of NG. These results suggest regional differences in the vascular responses to NG during the WISE bed rest. Conduit vessels of both the peripheral and cerebral vasculature dilated; however, the resistance vessels in skeletal muscle constricted causing a reduction in blood flow, while the resistance vessels of the brain appeared to be unaffected by NG so that cerebral blood flow remained constant. These results highlight the need to obtain quantitative measures of cerebral blood flow if there is reason to suspect that the diameter of the MCA might not remain constant.


Subject(s)
Bed Rest/adverse effects , Carotid Artery, Common/drug effects , Cerebrovascular Circulation/drug effects , Dizziness/physiopathology , Middle Cerebral Artery/drug effects , Nitroglycerin/administration & dosage , Vasodilator Agents/administration & dosage , Administration, Sublingual , Adult , Blood Flow Velocity/drug effects , Carbon Dioxide/blood , Cardiovascular Deconditioning , Carotid Artery, Common/diagnostic imaging , Carotid Artery, Common/physiopathology , Dizziness/blood , Dizziness/diagnostic imaging , Dizziness/etiology , Female , Head-Down Tilt , Humans , Male , Middle Cerebral Artery/diagnostic imaging , Middle Cerebral Artery/physiopathology , Regional Blood Flow/drug effects , Space Flight , Time Factors , Ultrasonography , Vasodilation/drug effects , Weightlessness Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...