Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38255578

ABSTRACT

This paper presents the results of investigations of the mechanical properties of epoxy-glass composites with the addition of rubber recyclate. For the purposes of the study, seven variants of materials were designed and manufactured, which differed in terms of the percentage of recyclate content (3, 5 and 7%) and the way the recyclate was distributed in the composite (one, two and three layers with a constant share of 5%). Tests of comparative mechanical properties were carried out using a static tensile test. As a result of the conducted tests, the following values were obtained for all variants of materials: tensile strength (Rm), Young's modulus (E) and percentage relative strain ε. In addition, for a deeper analysis of the results obtained, statistical calculations of Kolgomorov-Sinai EK-S metric entropy were performed on the experimental data sets, which were then analyzed. The results of the analysis indicate that the application of metric entropy calculations EK-S can be helpful in identifying changes in the internal structure of the composite material that occur during its loading, and which do not manifest themselves in any other tangible way. The data obtained as a result of the research can be used to optimize production processes and to determine the further direction of development of epoxy-glass composites with the addition of rubber recyclate, while saving time and resources.

2.
Polymers (Basel) ; 15(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37631432

ABSTRACT

Currently, there is a noticeable trend of modifying new materials by using additives from the recycling of harmful waste. This is to protect the environment by using waste to produce composites and at the same time to reduce the cost of their production. The article presents an analysis of the impact of the use of rubber recyclate obtained from the utilization of car tires as a sandwich layer of epoxy-glass composites and its impact on the strength parameters of the composite. The presented research is an extension of the previously conducted analyses on composite materials modified with the addition of rubber recyclate. The four variants of the materials produced contained the same percentage amount of rubber recyclate, but differed in the way it was distributed and the number of layers. Static tensile tests as well as impact strength and kinetics of damage to samples made with and without the addition of recyclate were carried out. Observation of the structures of the materials with the use of SEM was also performed. A significant influence of the method of distributing the recyclate in layers on the strength parameters of the materials was found. In the case of composites with three and two sandwich layers of recyclate, more favorable results were obtained compared to the blank sample. In addition, the values of the impact strength measurements were subjected to statistical analysis at the significance level of α = 95%. The distributions were tested for normality with the Shapiro-Wilk test, differences between pairs were tested with the Student's t-test for dependent groups, and ANOVA differences were tested for independent groups. Using the Student's t-test, it was confirmed that between the pairs of variables in the configurations reference sample and modified sample, there were significant statistical differences in the distribution of impact strength measurement results for all the analyzed materials. Statistical analysis showed a significant usefulness in the selection of the material with the best strength parameters and a significant role of statistical methods in the study of anisotropic materials.

3.
Materials (Basel) ; 15(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36079339

ABSTRACT

Polymer composites are materials that are used in many industries. Their wide application has a direct impact on the amount of post-production and post-consumer waste. The global problem with recycling, especially of fiber-reinforced polymeric materials, has prompted research into methods of their use. Previous research on composite materials with polyester-glass recyclate showed a decrease in mechanical properties. The construction material should have the highest mechanical properties. Based on the literature, it was found that the use of nanoadditives may have a positive effect on the parameters of the materials. The use of gamma aluminum nanopowder, in a small amount can significantly increase the mechanical properties of composites with polyester-glass recyclate, and thus can affect the application of these materials to structural elements. The article is devoted to the research on the hardness of composite materials with polyester-glass recyclate and gamma aluminum nanopowder. The main goal is to investigate the possibility of using a nanoadditive as a material, increasing the mechanical properties of composites with polyester-glass recyclate, so as to create a recycled material with the highest possible strength parameters. Hardness tests were performed using the Barcol method. For each composite material, 30 measurements were made in order to subject the results to a statistical analysis. Using parametric statistical tests it was shown that the obtained hardness values at the assumed level of statistical significance pv = 0.05 for comparisons for the samples of the reference material (B0) do not differ by chance, while for the comparisons in the configurations of the reference material (B0) with the modified materials, (R10, A2, R10A2) they do not differ by accident. Studies have shown that the addition of 2% gamma aluminum nanopowder slightly lowers the hardness of a pure polyester-glass composite, but the same additive allows the hardness of composite materials to be increased with the addition of glass recyclate. This is of particular importance for the development of the optimal composition of polyester-glass composites with the addition of recyclate, which will have good strength properties and at the same time enable the reuse of composite waste.

4.
Materials (Basel) ; 14(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202083

ABSTRACT

This paper investigates the structure and mechanical characteristics of a coating based on an AlSi12 alloy, obtained by centrifugal induction surfacing as an alternative to a bronze sliding bearing. To provide for the adhesion of an aluminum layer to the inner surface of a steel bearing housing, a sublayer of low-melting metals was formed, while the formation of the main layer and the sublayer was done in a single processing cycle. The low-melting metals had higher density, which ensured that the sublayer was created at the interface with the steel bearing housing under the action of centrifugal forces. It is shown that the low-melting sublayer forms a strong bond both with the aluminum alloy and with the steel base. Lead and tin are used as low-melting additives. It has been established that lead or tin used in a sublayer are indirectly involved in the structural formation of boundary layers of steel and aluminum claddings, acting as a medium for diffuse mass transfer. Thus, lead is not included in the composition of the main coating and does not change the chemical composition of the aluminum layer. After the addition of tin, the aluminum develops a dendritic structure, with tin captured in the interdendritic space. In this case, the deposited layer is saturated with iron with the formation of intermetallic (Fe, Al, Si) compounds, both at the interface and in the coating volume. This paper offers an explanation of the mechanism through which Pb and Sn act on the structure formation of the coating, and on the boundary layer of the steel bearing housing. Tribological tests have shown that the resulting materials are a promising option for plain bearings and highly competitive with the CuSn10P bronze.

SELECTION OF CITATIONS
SEARCH DETAIL
...