Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Physiol Behav ; 222: 112945, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32417232

ABSTRACT

Knockout (KO) mice missing the sweet taste receptor subunit T1R3 or the signaling protein TRPM5 have greatly attenuated sweetener preferences. Yet both types of KO mice develop preferences for glucose but not fructose in 24-h tests, which has been attributed to the postoral reinforcing actions of glucose. Here we probed for residual sugar taste sensitivity in KO mice. Unlike wildtype (WT) mice, food-restricted T1R3 KO and TRPM5 KO mice displayed little attraction for 8% glucose and 8% fructose in 1-min, two-bottle choice tests. However, in 1-h tests about half of the T1R3 KO mice displayed a significant preference for glucose over fructose (78-84%), while WT mice showed either no or weak preferences (41-56%) for glucose. Following one-bottle training sessions, WT mice display greater glucose preferences although still weaker than those observed in T1R3 KO mice. In contrast, TRPM5 KO mice were indifferent to sugars in 1-h tests but developed a strong preference for glucose over fructose in 24-h tests. T1R3 taste cells contain the sodium glucose cotransporter 1 (SGLT1) and the ATP-gated K+ (KATP) metabolic sensor, which may mediate the unlearned glucose preference displayed by T1R3 KO mice. Unlike WT mice, many T1R3 KO mice strongly preferred glucose to a non-metabolizable glucose analog (α-methyl-D-glucopyranoside, MDG) in initial 1-h choice tests. Glucose and MDG are both ligands for SGLT1 which indicates that SGLT1 sensing does not mediate the glucose preference of T1R3 KO mice. Instead, KATP sensing and/or other oral sensors are implicated. The MDG findings also argue against postoral sensing as the primary source of the initial glucose preference displayed by T1R3 KO mice. Why only half of the T1R3 KO mice showed this preference in 1-h tests remains to be determined. All T1R3 KO mice preferred glucose to fructose in 24-h tests, which appears to be due to both oral and postoral glucose sensing.


Subject(s)
Glucose , Taste , Animals , Food Preferences , Mice , Mice, Inbred C57BL , Mice, Knockout , Taste/genetics
2.
Chem Senses ; 40(4): 245-58, 2015 May.
Article in English | MEDLINE | ID: mdl-25715333

ABSTRACT

Recent studies suggest that because of their energy value, sugars are more rewarding than non-caloric sweeteners. However, intragastric infusion data indicate that sugars differ in their postoral appetite-stimulating effects. We therefore compared the preference for isocaloric 8% sucrose, glucose, and fructose solutions with that of a non-caloric sweetener solution (0.8% sucralose) in C57BL/6J mice. Brief 2-bottle tests indicated that sucralose was isopreferred to sucrose but more preferred than glucose or fructose. Yet, in long-term tests, the mice preferred sucrose and glucose, but not fructose to sucralose. Additional experiments were conducted with a non-caloric 0.1% sucralose + 0.1% saccharin mixture (S + S), which does not have the postoral inhibitory effects of 0.8% sucralose. The S + S was preferred to fructose in brief and long-term choice tests. S + S was also preferred to glucose and sucrose in brief tests, but the sugars were preferred in long-term tests. In progressive ratio tests, non-deprived and food-deprived mice licked more for glucose but not fructose than for S + S. These findings demonstrate that the nutrient-specific postoral actions, not calories per se, determine the avidity for sugar versus non-caloric sweeteners. Furthermore, sweet taste intensity and potential postoral inhibitory actions must be considered in comparing non-caloric and caloric sweeteners.


Subject(s)
Energy Intake , Food Preferences/physiology , Glucose/physiology , Reward , Sweetening Agents/metabolism , Administration, Oral , Animals , Choice Behavior/physiology , Food Deprivation , Fructose/administration & dosage , Fructose/physiology , Glucose/administration & dosage , Male , Mice , Mice, Inbred C57BL , Saccharin/administration & dosage , Saccharin/metabolism , Sucrose/administration & dosage , Sucrose/analogs & derivatives , Sucrose/metabolism , Sweetening Agents/administration & dosage , Taste/physiology , Time Factors
3.
Am J Physiol Regul Integr Comp Physiol ; 307(12): R1448-57, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25320345

ABSTRACT

Recent studies indicate that, unlike glucose, fructose has little or no post-oral preference conditioning actions in C57BL/6J (B6) mice. The present study determined whether this is also the case for FVB mice, which overconsume fructose relative to B6 mice. In experiment 1, FVB mice strongly preferred a noncaloric 0.1% sucralose + 0.1% saccharin (S+S) solution to 8% fructose in a 2-day choice test but switched their preference to fructose after separate experience with the two sweeteners. Other FVB mice displayed a stronger preference for 8% glucose over S+S. In a second experiment, ad libitum-fed FVB mice trained 24 h/day acquired a significant preference for a flavor (CS+) paired with intragastric (IG) self-infusions of 16% fructose over a different flavor (CS-) paired with IG water infusions. IG fructose infusions also conditioned flavor preferences in food-restricted FVB mice trained 1 h/day. IG infusions of 16% glucose conditioned stronger preferences in FVB mice trained 24- or 1 h/day. Thus, fructose has post-oral flavor conditioning effects in FVB mice, but these effects are less pronounced than those produced by glucose. Further studies of the differential post-oral conditioning effects of fructose and glucose in B6 and FVB mice should enhance our understanding of the physiological processes involved in sugar reward.


Subject(s)
Behavior, Animal/drug effects , Dietary Carbohydrates/administration & dosage , Food Preferences/drug effects , Fructose/administration & dosage , Glucose/administration & dosage , Taste Perception/drug effects , Animals , Conditioning, Psychological/drug effects , Male , Mice , Reward , Saccharin/administration & dosage , Species Specificity , Sucrose/administration & dosage , Sucrose/analogs & derivatives , Sweetening Agents/administration & dosage , Time Factors
4.
Am J Physiol Regul Integr Comp Physiol ; 305(12): R1490-7, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24154510

ABSTRACT

In addition to orosensory signals, postoral actions of fat stimulate appetite and condition flavor preferences, but the gut sensors mediating these responses are unknown. Here, we investigated the role of the fatty acid sensors GPR40 and GPR120 in postoral and oral preferences for a soybean oil emulsion (Intralipid). Mice were trained to drink a flavored solution (CS+) paired with intragastric (IG) oil infusions and another flavored solution (CS-) paired with water infusions. Knockout (KO) mice missing GPR40 or GPR120 sensors increased their CS+ intake in one-bottle tests (1 h/day) but less so than wild-type (WT) mice. The KO mice also preferred the CS+ to CS- in a two-bottle test, but the preference was attenuated in GPR40 KO mice. Double-knockout (DoKO) mice missing both GPR40 and GPR120 displayed attenuated stimulation of CS+ intake and only a marginal CS+ preference. The DoKO mice developed a more substantial CS+ preference when tested 24 h/day, although weaker than that of WT mice. The DoKO mice also consumed less of the CS+ paired with IG Intralipid, as well as less Intralipid in oral tests. However, DoKO mice, like GPR40 KO and GPR120 KO mice did not differ from WT mice in their preference for Intralipid over water at 0.001%-20% concentrations. In contrast to prior results obtained with mice missing the CD36 fatty acid sensor, these findings indicate that, together, GPR40 and GPR120 play a critical role in the postoral stimulation of appetite by fat but are not essential for oral fat preferences.


Subject(s)
Dietary Fats , Food Preferences/physiology , Receptors, G-Protein-Coupled/physiology , Taste/physiology , Animals , Appetite/physiology , Behavior, Animal/physiology , Fatty Acids , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Time Factors
5.
Am J Physiol Regul Integr Comp Physiol ; 305(7): R840-53, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23926132

ABSTRACT

Post-oral sugar actions enhance the intake of and preference for sugar-rich foods, a process referred to as appetition. Here, we investigated the role of intestinal sodium glucose cotransporters (SGLTs) in sugar appetition in C57BL/6J mice using sugars and nonmetabolizable sugar analogs that differ in their affinity for SGLT1 and SGLT3. In experiments 1 and 2, food-restricted mice were trained (1 h/day) to consume a flavored saccharin solution [conditioned stimulus (CS-)] paired with intragastric (IG) self-infusions of water and a different flavored solution (CS+) paired with infusions of 8 or 12% sugars (glucose, fructose, and galactose) or sugar analogs (α-methyl-D-glucopyranoside, MDG; 3-O-methyl-D-glucopyranoside, OMG). Subsequent two-bottle CS+ vs. CS- choice tests were conducted without coinfusions. Infusions of the SGLT1 ligands glucose, galactose, MDG, and OMG stimulated CS+ licking above CS- levels. However, only glucose, MDG, and galactose conditioned significant CS+ preferences, with the SGLT3 ligands (glucose, MDG) producing the strongest preferences. Fructose, which is not a ligand for SGLTs, failed to stimulate CS+ intake or preference. Experiment 3 revealed that IG infusion of MDG+phloridzin (an SGLT1/3 antagonist) blocked MDG appetition, whereas phloridzin had minimal effects on glucose-induced appetition. However, adding phloretin (a GLUT2 antagonist) to the glucose+phloridzin infusion blocked glucose appetition. Taken together, these findings suggest that humoral signals generated by intestinal SGLT1 and SGLT3, and to a lesser degree, GLUT2, mediate post-oral sugar appetition in mice. The MDG results indicate that sugar metabolism is not essential for the post-oral intake-stimulating and preference-conditioning actions of sugars in mice.


Subject(s)
Appetite Regulation/drug effects , Carbohydrates/administration & dosage , Food Preferences/drug effects , Administration, Oral , Animals , Conditioning, Psychological/drug effects , Drinking/drug effects , Fructose/administration & dosage , Fructose/metabolism , Galactose/administration & dosage , Galactose/metabolism , Glucose/administration & dosage , Glucose/metabolism , Glucose Transporter Type 2/drug effects , Glucose Transporter Type 2/metabolism , Intestinal Absorption , Intestinal Mucosa/metabolism , Intestines/drug effects , Ligands , Male , Methylglucosides/administration & dosage , Methylglucosides/metabolism , Mice , Mice, Inbred C57BL , Saccharin/administration & dosage , Self Administration , Sodium-Glucose Transport Proteins/drug effects , Sodium-Glucose Transport Proteins/metabolism , Sodium-Glucose Transporter 1/drug effects , Sodium-Glucose Transporter 1/metabolism , Sweetening Agents/administration & dosage , Time Factors
6.
Chem Senses ; 38(5): 421-37, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23547138

ABSTRACT

Knockout (KO) mice missing the sweet taste receptor subunit T1r3 or the signaling protein Trpm5 have greatly attenuated sweetener preferences but learn to prefer sucrose in 24-h tests. Here, we examined 24-h preferences of T1r3 KO, Trpm5 KO, and C57BL/6J wild-type (WT) mice for glucose, fructose, galactose, and corn starch. Unlike glucose, fructose has little postoral reward effect in WT mice, whereas conflicting data have been obtained with galactose. Naïve KO mice were initially indifferent to dilute glucose solutions (0.5-4%) but exhibited strong preferences for 8-32% concentrations. In a second test, they strongly preferred (~90%) all glucose concentrations although they drank less sugar than WT mice. Naïve KO mice were indifferent to 0.5-8% fructose and avoided 16-32% fructose. However, the glucose-experienced KO mice displayed significant preferences for all fructose solutions. Naïve KO mice preferred only 8% galactose, whereas WT mice preferred 4-16% galactose, and all mice avoided 32% galactose. Galactose experience enhanced the preference for this sugar in KO and WT mice. Naïve T1r3 KO and WT mice displayed similar preferences for 0.5-32% corn starch, which were enhanced by starch experience. Naïve Trpm5 KO mice did not prefer starch but did so after 1-bottle starch experience. The results confirm the sweet taste deficits of T1r3 KO and Trpm5 KO mice but demonstrate their ability to develop strong glucose and milder galactose preferences attributed to the postoral actions of these sugars. The acquired preference for the non-sweet flavor properties of glucose generalized to those of fructose. The findings further demonstrate that although Trpm5 (but not T1r3) signaling is essential for starch preference, Trpm5 KO mice can learn to prefer starch based on its postoral effects.


Subject(s)
Carbohydrates , Food Preferences/physiology , Receptors, G-Protein-Coupled/metabolism , TRPM Cation Channels/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/deficiency , TRPM Cation Channels/deficiency , Taste/physiology
7.
Physiol Behav ; 109: 33-41, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23200639

ABSTRACT

In a recent study, intragastric (IG) self-infusion of 16% glucose stimulated 1-h intake and conditioned a preference for a flavored saccharin solution in C57BL/6J mice (Zukerman et al., 2011). Experiment 1 of the present study presents a concentration-response analysis of IG glucose-induced intake stimulation monitored by recording licking response every min of the 1h/day sessions. Separate groups of food-restricted mice consumed a flavored saccharin solution (the CS-) paired with IG self-infusions of water (Test 0) followed by a different flavored solution (the CS+) paired with IG self-infusions of 2, 4, 8, 16, or 32% glucose (Tests 1-3). Following additional CS- and CS+ training sessions, a two-bottle CS+ vs. CS- choice test was conducted without infusions. Self-infusions of 8%, 16% or 32% glucose stimulated CS+ licking within 12 min of the first test session and even earlier in subsequent test sessions, and also conditioned significant CS+ preferences in the two-bottle test. The stimulation of early licking and CS+ preference increased as a function of glucose concentration. The amount of glucose solute self-infused increased with sugar concentration as did post-infusion blood glucose levels. The 2% glucose infusion did not stimulate CS+ intake and the 2% and 4% infusions failed to produce a CS+ preference in the 1-h test. Experiment 2 revealed that intraperitoneal self-infusions of 8% glucose, unlike IG glucose self-infusions, failed to stimulate CS+ licking or preference despite producing maximal increases in blood glucose levels. Taken together, these and other findings suggest that glucose rapidly produces concentration-dependent intestinal signals that stimulate intake and condition flavor preferences while post-oral satiation signals limit total amounts consumed.


Subject(s)
Conditioning, Psychological/drug effects , Flavoring Agents/administration & dosage , Food Preferences/physiology , Glucose/administration & dosage , Saccharin/administration & dosage , Sweetening Agents/administration & dosage , Administration, Oral , Analysis of Variance , Animals , Conditioning, Psychological/physiology , Dose-Response Relationship, Drug , Drinking Behavior/drug effects , Food Preferences/drug effects , Male , Mice , Mice, Inbred C57BL , Reward
8.
Physiol Behav ; 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23582635

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

9.
Am J Physiol Regul Integr Comp Physiol ; 301(6): R1635-47, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21975648

ABSTRACT

Although widely assumed to have only satiating actions, nutrients in the gut can also condition increases in intake in some cases. Here we studied the time course of post-oral nutrient stimulation of ingestion in food-restricted C57BL/6J mice. In experiment 1, mice adapted to drink a 0.8% sucralose solution 1 h/day, rapidly increased their rate of licking (within 4-6 min) when first tested with an 8% glucose solution and even more so in tests 2 and 3. Other mice decreased their licking rate when switched from sucralose to 8% fructose, a sugar that is sweet like glucose but lacks positive post-oral effects in mice. The glucose-stimulated drinking is due to the sugar's post-oral rather than taste properties, because sucralose is highly preferred to glucose and fructose in brief choice tests. A second experiment showed that the glucose-stimulated ingestion is associated with a conditioned flavor preference in both intact and capsaicin-treated mice. This indicates that the post-oral stimulatory action of glucose is not mediated by capsaicin-sensitive visceral afferents. In experiment 3, mice consumed flavored saccharin solutions as they self-infused water or glucose via an intragastric (IG) catheter. The glucose self-infusion stimulated ingestion within 13-15 min in test 1 and produced a conditioned increase in licking that was apparent in the initial minute of tests 2 and 3. Experiment 4 revealed that IG self-infusions of a fat emulsion also resulted in post-oral stimulation of licking in test 1 and conditioned increases in tests 2 and 3. These findings indicate that glucose and fat can generate stimulatory post-oral signals early in a feeding session that increase ongoing ingestion and condition increases in flavor acceptance and preference revealed in subsequent feeding sessions. The test procedures developed here can be used to investigate the peripheral and central processes involved in stimulation of intake by post-oral nutrients.


Subject(s)
Dietary Fats/pharmacology , Eating/drug effects , Flavoring Agents/pharmacology , Glucose/pharmacology , Animals , Appetite Stimulants/pharmacology , Food Deprivation , Fructose/pharmacology , Glucose/administration & dosage , Male , Mice , Mice, Inbred C57BL , Sucrose/analogs & derivatives , Sucrose/pharmacology
10.
Chem Senses ; 35(5): 433-43, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20413452

ABSTRACT

Use of natural noncaloric sweeteners in commercial foods and beverages has expanded recently to include compounds from the plant Stevia rebaudiana. Little is known about the responses of rodents, the animal models for many studies of taste systems and food intake, to stevia sweeteners. In the present experiments, preferences of female Sprague-Dawley rats and C57BL/6J mice for different stevia products were compared with those for the artificial sweetener saccharin. The stevia component rebaudioside A has the most sweetness and least off-tastes to human raters. In ascending concentration tests (48-h sweetener vs. water), rats and mice preferred a high-rebaudioside, low-stevioside extract as strongly as saccharin, but the extract stimulated less overdrinking and was much less preferred to saccharin in direct choice tests. Relative to the extract, mice drank more pure rebaudioside A and showed stronger preferences but still less than those for saccharin. Mice also preferred a commercial mixture of rebaudioside A and erythritol (Truvia). Similar tests of sweet receptor T1R3 knockout mice and brief-access licking tests with normal mice suggested that the preferences were based on sweet taste rather than post-oral effects. The preference response of rodents to stevia sweeteners is notable in view of their minimal response to some other noncaloric sweeteners (aspartame and cyclamate).


Subject(s)
Food Preferences/ethnology , Saccharin/pharmacology , Stevia/chemistry , Sweetening Agents/pharmacology , Taste/physiology , Animals , Aspartame/pharmacology , Cyclamates/pharmacology , Diterpenes, Kaurane/pharmacology , Drinking/physiology , Feeding Behavior , Female , Food Preferences/classification , Glucosides/pharmacology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Sprague-Dawley , Species Specificity , Taste Threshold
11.
Chem Senses ; 34(8): 685-94, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19736224

ABSTRACT

Prior work has shown that sweet taste-deficient T1R3 knockout (KO) mice developed significant sucrose preferences when given long-term sugar versus water tests. The current study investigated the role of olfaction in this experience-conditioned sucrose preference. T1R3 KO and C57BL/6 wild-type (WT) mice were given 24-h sugar versus water tests with ascending concentrations of sucrose (0.5-32%), after which the mice received olfactory bulbectomy (OBx) or sham surgery. When retested with sucrose, the Sham-KO mice preferred all sugar solutions to water, although their intake and preference were less than those of the Sham-WT mice. The OBx-KO mice, in contrast, showed no or weak preferences for dilute sucrose solutions (0.5-8%) although they strongly preferred concentrated sugar solutions (16-32%). OBx-WT mice displayed only a partial reduction in their sucrose preference. Although the OBx mice of both genotypes underconsumed dilute sucrose solutions relative to Sham mice, they overconsumed concentrated sucrose. These results indicate that olfaction plays a critical role in the conditioned preference of T1R3 KO mice for dilute sugar solutions. Further, the fact that OBx-KO mice preferred concentrated sucrose solutions in the absence of normal sweet taste and olfactory sensations underscores the potency of postoral nutritive signals in promoting ingestion.


Subject(s)
Conditioning, Operant , Food Preferences/physiology , Receptors, G-Protein-Coupled/genetics , Smell , Sucrose , Sweetening Agents , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Sucrose/metabolism , Sweetening Agents/metabolism
12.
Am J Physiol Regul Integr Comp Physiol ; 296(4): R866-76, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19091911

ABSTRACT

In addition to their well-known preference for sugars, mice and rats avidly consume starch-derived glucose polymers (e.g., Polycose). T1R3 is a component of the mammalian sweet taste receptor that mediates the preference for sugars and artificial sweeteners in mammals. We examined the role of the T1R3 receptor in the ingestive response of mice to Polycose and sucrose. In 60-s two-bottle tests, knockout (KO) mice preferred Polycose solutions (4-32%) to water, although their overall preference was lower than WT mice (82% vs. 94%). KO mice also preferred Polycose (0.5-32%) in 24-h two-bottle tests, although less so than WT mice at dilute concentrations (0.5-4%). In contrast, KO mice failed to prefer sucrose to water in 60-s tests. In 24-h tests, KO mice were indifferent to 0.5-8% sucrose, but preferred 16-32% sucrose; this latter result may reflect the post-oral effects of sucrose. Overall sucrose preference and intake were substantially less in KO mice than WT mice. However, when retested with 0.5-32% sucrose solutions, the KO mice preferred all sucrose concentrations, although they drank less sugar than WT mice. The experience-induced sucrose preference is attributed to a post-oral conditioned preference for the T1R3-independent orosensory features of the sugar solutions (odor, texture, T1R2-mediated taste). Chorda tympani nerve recordings revealed virtually no response to sucrose in KO mice, but a near-normal response to Polycose. These results indicate that the T1R3 receptor plays a critical role in the taste-mediated response to sucrose but not Polycose.


Subject(s)
Feeding Behavior , Glucans/administration & dosage , Receptors, G-Protein-Coupled/metabolism , Sucrose/administration & dosage , Taste , Animals , Chorda Tympani Nerve/physiology , Female , Food Preferences , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Time Factors
13.
Am J Physiol Regul Integr Comp Physiol ; 293(4): R1504-13, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17652359

ABSTRACT

Trpm5 and alpha-gustducin are key to the transduction of tastes of sugars, amino acids, and bitter compounds. This study investigated the role of these signaling proteins in the preference for fat, starch, and starch-derived polysaccharides (Polycose), using Trpm5 knockout (Trpm5 KO) and alpha-gustducin knockout (Gust KO) mice. In initial two-bottle tests (24 h/day), Trpm5 KO mice showed no preference for soybean oil emulsions (0.313-2.5%), Polycose solutions (0.5-4%), or starch suspensions (0.5-4%). Gust KO mice displayed an attenuated preference for Polycose, but their preferences for soybean oil and starch were comparable to those of C57BL/6J wild-type (WT) mice. Gust KO mice preferred starch to Polycose, whereas WT mice had the opposite preference. After extensive experience with soybean oil emulsions (Intralipid) and Polycose solutions, the Trpm5 KO mice developed preferences comparable to the WT mice, although their absolute intakes remained suppressed. Similarly, Gust KO mice developed a strong Polycose preference with experience, but they continued to consume less than the WT mice. These results implicate alpha-gustducin and Trpm5 as mediators of polysaccharide taste and Trpm5 in fat taste. The disruption in Polycose, but not starch, preference in Gust KO mice indicates that distinct sensory signaling pathways mediate the response to these carbohydrates. The experience-induced rescue of fat and Polycose preferences in the KO mice likely reflects the action of a postoral-conditioning mechanism, which functions in the absence of alpha-gustducin and Trpm5.


Subject(s)
Dietary Carbohydrates , Dietary Fats , Food Preferences/physiology , TRPM Cation Channels/genetics , Transducin/genetics , Animals , Feeding Behavior , Female , Glucans/metabolism , Male , Mice , Mice, Knockout , Starch/metabolism , Sweetening Agents , TRPM Cation Channels/metabolism , Taste/genetics , Taste/physiology , Transducin/metabolism , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...