Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 11: 591802, 2020.
Article in English | MEDLINE | ID: mdl-33584562

ABSTRACT

Bacterial resistance to known antibiotics comprises a serious threat to public health. Propagation of multidrug-resistant pathogenic strains is a reason for undertaking a search for new therapeutic strategies, based on newly developed chemical compounds and the agents present in nature. Moreover, antibiotic treatment of infections caused by enterotoxin toxin-bearing strain-enterohemorrhagic Escherichia coli (EHEC) is considered hazardous and controversial due to the possibility of induction of bacteriophage-encoded toxin production by the antibiotic-mediated stress. The important source of potentially beneficial compounds are secondary plant metabolites, isothiocyanates (ITC), and phytoncides from the Brassicaceae family. We reported previously that sulforaphane and phenethyl isothiocyanate, already known for their chemopreventive and anticancer features, exhibit significant antibacterial effects against various pathogenic bacteria. The mechanism of their action is based on the induction of the stringent response and accumulation of its alarmones, the guanosine penta- and tetraphosphate. In this process, the amino acid starvation path is employed via the RelA protein, however, the precise mechanism of amino acid limitation in the presence of ITCs is yet unknown. In this work, we asked whether ITCs could act synergistically with each other to increase the antibacterial effect. A set of aliphatic ITCs, such as iberin, iberverin, alyssin, erucin, sulforaphen, erysolin, and cheirolin was tested in combination with sulforaphane against E. coli. Our experiments show that all tested ITCs exhibit strong antimicrobial effect individually, and this effect involves the stringent response caused by induction of the amino acid starvation. Interestingly, excess of specific amino acids reversed the antimicrobial effects of ITCs, where the common amino acid for all tested compounds was glycine. The synergistic action observed for iberin, iberverin, and alyssin also led to accumulation of (p)ppGpp, and the minimal inhibitory concentration necessary for the antibacterial effect was four- to eightfold lower than for individual ITCs. Moreover, the unique mode of ITC action is responsible for inhibition of prophage induction and toxin production, in addition to growth inhibition of EHEC strains. Thus, the antimicrobial effect of plant secondary metabolites by the stringent response induction could be employed in potential therapeutic strategies.

2.
Sci Total Environ ; 621: 186-192, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29179074

ABSTRACT

The aim of these studies is to evaluate the ambient CO2 capture abilities of the membrane contactor system in the same conditions as leafs, such as ambient temperature, pressure and low CO2 concentration, where the only driving force is the concentration gradient. The polysulfone membrane employed was made by a phase inversion process and characterized by ESEM micrographs which were used to determine the thickness, asymmetry and pore size. Besides, the porosity of the membrane was measured from the membrane and polysulfone density correlation and the hydrophobicity was analyzed by contact angle measurements. Moreover, the compatibility of membrane and absorbent was evaluated, in order to exclude wetting issues by meaning of swelling, dynamic contact angle and AFM analysis. The prepared membranes were introduced into a cross flow module and used as contactors between CO2 and the absorbing media, a potassium hydroxide solution. The influence of the membrane thickness, absorbent stirring rate, solution pH and absorption time on CO2 capture were evaluated. Absorbent solution stirring rate showed no statistically significant influence on absorption. We observed a non-linear correlation between the capture rate and the increase of absorbent solution pH as well as absorption time. The results showed that the efficiency of our CO2 capture system is similar to stomatal carbon dioxide assimilation rate, achieving stable value of 20µmol/m2·s after 1h of experiment.

SELECTION OF CITATIONS
SEARCH DETAIL
...