Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6285, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491078

ABSTRACT

Resistance to fungicides is a global challenge as target proteins under selection can evolve rapidly, reducing fungicide efficacy. To manage resistance, detection technologies must be fast and flexible enough to cope with a rapidly increasing number of mutations. The most important agricultural fungicides are azoles that target the ergosterol biosynthetic enzyme sterol 14α-demethylase (CYP51). Mutations associated with azole resistance in the Cyp51 promoter and coding sequence can co-occur in the same allele at different positions and codons, increasing the complexity of resistance detection. Resistance mutations arise rapidly and cannot be detected using traditional amplification-based methods if they are not known. To capture the complexity of azole resistance in two net blotch pathogens of barley we used the Oxford Nanopore MinION to sequence the promoter and coding sequence of Cyp51A. This approach detected all currently known mutations from biologically complex samples increasing the simplicity of resistance detection as multiple alleles can be profiled in a single assay. With the mobility and decreasing cost of long read sequencing, we demonstrate this approach is broadly applicable for characterizing resistance within known agrochemical target sites.


Subject(s)
Ascomycota , Fungicides, Industrial , Fungicides, Industrial/pharmacology , Azoles , Ascomycota/metabolism , Mutation , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism
2.
Front Microbiol ; 9: 706, 2018.
Article in English | MEDLINE | ID: mdl-29706938

ABSTRACT

The increased occurrence of triazole fungicide resistant strains of Blumeria graminis f. sp. hordei (Bgh) is an economic concern for the barley industry in Australia and elsewhere. High levels of resistance to triazoles in the field are caused by two separate point mutations in the Cyp51 gene, Y136F and S509T. Early detection of these mutations arising in pathogen field populations is important as this allows time for changes in fungicide practices to be adopted, thus mitigating potential yield losses due to fungicide failure and preventing the resistance from becoming dominant. A digital PCR (dPCR) assay has been developed for the detection and quantification of the Y136F and S509T mutations in the Bgh Cyp51 gene. Mutation levels were quantifiable as low as 0.2% in genomic DNA extractions and field samples. This assay was applied to the high throughput screening of Bgh field and bait trial samples from barley growing regions across Australia in the 2015 and 2016 growing seasons and identified the S509T mutation for the first time in the Eastern states of Australia. This is the first report on the use of digital PCR technology for fungicide resistance detection and monitoring in agriculture. Here we describe the potential application of dPCR for the screening of fungicide resistance mutations in a network of specifically designed bait trials. The combination of these two tools constitute an early warning system for the development of fungicide resistance that allows for the timely adjustment of management practices.

3.
J Biol Chem ; 286(20): 17445-54, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21454632

ABSTRACT

Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, ß-, epi-ß-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-ß-farnesene, epi-ß-santalene, and ß-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Evolution, Molecular , Plant Proteins/metabolism , Santalum/enzymology , Sesquiterpenes/metabolism , Alkyl and Aryl Transferases/genetics , Amino Acid Sequence , DNA, Complementary/genetics , Molecular Sequence Data , Plant Proteins/genetics , Santalum/genetics
4.
Phytochemistry ; 71(14-15): 1695-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20678782

ABSTRACT

Conifers produce terpenoid-rich oleoresin in specialized resin ducts as a main line of defence against pests and pathogens. In spruce species (Picea spp.), axial resin ducts are either present constitutively in the cortex tissue (cortical resin ducts, CRDs) or are formed de novo as traumatic resin ducts (TRDs) in the cambial zone upon attack by insects, fungi or treatment with methyl jasmonate (MeJA). Using immunofluorescence localization we tested if previously formed CRDs respond to MeJA treatment with increased capacity for diterpenoid biosynthesis. We also tested the dynamics of diterpene synthase localization in the cambial zone. Immunofluorescence localization was performed using an antibody against a diterpene synthase, levopimaradiene/abietadiene synthase (LAS), in stem cross-sections of untreated and 0.1% MeJA-treated 4-year old Sitka spruce (P. sitchensis) trees. No fluorescence signal was observed in untreated stem cross-sections; however, signal was present 2 days after treatment with MeJA exclusively in the epithelial cells of CRDs. Fluorescence steadily increased in the CRD epithelial cells 4 and 8 days after treatment. At 8days, additional fluorescence was observed in developing epithelial cells of traumatic resin ducts TRDs in the cambial zone. These results confirm that resin duct epithelial cells are the main site of diterpene biosynthesis in Sitka spruce, diterpenoid biosynthesis is induced in CRD epithelial cells early upon treatment with MeJA, and immature developing TRD epithelial cells produce diterpene synthase enzyme. Overall, the results of this work improve our understanding of spatial and temporal patterns of induced diterpene resin acid biosynthesis in conifers.


Subject(s)
Alkyl and Aryl Transferases/analysis , Diterpenes/chemistry , Isomerases/analysis , Picea/enzymology , Acetates , Alkyl and Aryl Transferases/metabolism , Cyclopentanes , Diterpenes/metabolism , Fluorescent Antibody Technique , Isomerases/metabolism , Microscopy, Confocal , Oxylipins , Picea/metabolism , Plant Stems/chemistry , Resins, Plant/metabolism
5.
J Integr Plant Biol ; 52(1): 86-97, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20074143

ABSTRACT

Defense-related terpenoid biosynthesis in conifers is a dynamic process closely associated with specialized anatomical structures that allows conifers to cope with attack from many potential pests and pathogens. The constitutive and inducible terpenoid defense of conifers involves several hundred different monoterpenes, sesquiterpenes and diterpenes. Changing arrays of these many compounds are formed from the general isoprenoid pathway by activities of large gene families for two classes of enzymes, the terpene synthases and the cytochrome P450-dependent monooxygenases of the CYP720B group. Extensive studies have been conducted on the genomics, proteomics and molecular biochemical characterization of these enzymes. Many of the conifer terpene synthases are multi-product enzymes, and the P450 enzymes of the CYP720B group are promiscuous in catalyzing multiple oxidations, along homologous series of diterpenoids, from a broad spectrum of substrates. The terpene synthases and CYP720B genes respond to authentic or simulated insect attack with increased transcript levels, protein abundance and enzyme activity. The constitutive and induced oleoresin terpenoids for conifer defense accumulate in preformed cortical resin ducts and in xylem trauma-associated resin ducts. Formation of these resin ducts de novo in the cambium zone and developing xylem, following insect attack or treatment of trees with methyl jasmonate, is a unique feature of the induced defense of long-lived conifer trees.


Subject(s)
Terpenes/metabolism , Tracheophyta/cytology , Tracheophyta/immunology , Acetates/pharmacology , Animals , Cyclopentanes/pharmacology , Gene Expression Profiling , Insecta/physiology , Oxylipins/pharmacology , Stress, Physiological/drug effects , Tracheophyta/enzymology , Tracheophyta/genetics
6.
Plant J ; 60(6): 1015-30, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19754519

ABSTRACT

Induction of terpene synthase (TPS) gene expression and enzyme activity is known to occur in response to various chemical and biological stimuli in several species of spruce (genus Picea). However, high sequence identity between TPS family members has made it difficult to determine the induction patterns of individual TPS at the protein and transcript levels and whether specific TPS enzymes respond differentially to treatment. In the present study we used a multi-level approach to measure the induction and activity of TPS enzymes in protein extracts of Norway spruce (Picea abies) bark tissue following treatment with methyl jasmonate (MeJA). Measurements were made on the transcript, protein, enzyme activity and metabolite levels. Using a relatively new proteomics application, selective reaction monitoring (SRM), it was possible to differentiate and quantitatively measure the abundance of several known TPS proteins and three 1-deoxy-D-xylulose 5-phosphate synthase (DXS) isoforms in Norway spruce. Protein levels of individual TPS and DXS enzymes were differentially induced upon MeJA treatment and good correlation was generally observed between induction of transcripts, proteins, and enzyme activities. Most of the mono- and diterpenoid metabolites accumulated with similar temporal patterns of induction as part of the coordinated multi-compound chemical defense response. Protein and enzyme activity levels of the monoTPS (+)-3-carene synthase and the corresponding accumulation of (+)-3-carene was induced to a higher fold change than any other TPS or metabolite measured, indicating an important role in the induced terpenoid defense response in Norway spruce.


Subject(s)
Acetates/metabolism , Alkyl and Aryl Transferases/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Picea/enzymology , Proteomics/methods , Gene Expression Profiling , Isoenzymes/metabolism , Multigene Family , Picea/genetics , RNA, Plant/genetics , Terpenes/metabolism , Transferases/metabolism
7.
Mol Cell Proteomics ; 8(1): 86-98, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18682378

ABSTRACT

Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids, including the narcotic analgesic morphine and the antimicrobial agent sanguinarine. In contrast to the plant, cell cultures of opium poppy do not accumulate alkaloids constitutively but produce sanguinarine in response to treatment with certain fungal-derived elicitors. The induction of sanguinarine biosynthesis provides a model platform to characterize the regulation of benzylisoquinoline alkaloid pathways and other defense responses. Proteome analysis of elicitor-treated opium poppy cell cultures by two-dimensional denaturing-polyacrylamide gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry facilitated the identification of 219 of 340 protein spots based on peptide fragment fingerprint searches of a combination of databases. Of the 219 hits, 129 were identified through pre-existing plant proteome databases, 63 were identified by matching predicted translation products in opium poppy-expressed sequence tag databases, and the remainder shared evidence from both databases. Metabolic enzymes represented the largest category of proteins and included S-adenosylmethionine synthetase, several glycolytic, and a nearly complete set of tricarboxylic acid cycle enzymes, one alkaloid, and several other secondary metabolic enzymes. The abundance of chaperones, heat shock proteins, protein degradation factors, and pathogenesis-related proteins provided a comprehensive proteomics view on the coordination of plant defense responses. Qualitative comparison of protein abundance in control and elicitor-treated cell cultures allowed the separation of induced and constitutive or suppressed proteins. DNA microarrays were used to corroborate increases in protein abundance with a corresponding induction in cognate transcript levels.


Subject(s)
Papaver/cytology , Papaver/immunology , Proteomics , Tandem Mass Spectrometry , Alkaloids/biosynthesis , Benzophenanthridines/biosynthesis , Benzophenanthridines/chemistry , Botrytis/physiology , Cell Culture Techniques , Chromatography, Liquid , DNA, Complementary/isolation & purification , Electrophoresis, Gel, Two-Dimensional , Enzyme Induction , Expressed Sequence Tags , Gene Expression Regulation, Plant , Isoquinolines/chemistry , Molecular Sequence Data , Papaver/genetics , Papaver/microbiology , Plant Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
BMC Plant Biol ; 8: 5, 2008 Jan 22.
Article in English | MEDLINE | ID: mdl-18211706

ABSTRACT

BACKGROUND: Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a model system to study plant alkaloid metabolism. The plant is cultivated as the only commercial source of the narcotic analgesics morphine and codeine, but also produces many other alkaloids including the antimicrobial agent sanguinarine. Modulations in plant secondary metabolism as a result of environmental perturbations are often associated with the altered regulation of other metabolic pathways. As a key component of our functional genomics platform for opium poppy we have used proton nuclear magnetic resonance (1H NMR) metabolomics to investigate the interplay between primary and secondary metabolism in cultured opium poppy cells treated with a fungal elicitor. RESULTS: Metabolite fingerprinting and compound-specific profiling showed the extensive reprogramming of primary metabolic pathways in association with the induction of alkaloid biosynthesis in response to elicitor treatment. Using Chenomx NMR Suite v. 4.6, a software package capable of identifying and quantifying individual compounds based on their respective signature spectra, the levels of 42 diverse metabolites were monitored over a 100-hour time course in control and elicitor-treated opium poppy cell cultures. Overall, detectable and dynamic changes in the metabolome of elicitor-treated cells, especially in cellular pools of carbohydrates, organic acids and non-protein amino acids were detected within 5 hours after elicitor treatment. The metabolome of control cultures also showed substantial modulations 80 hours after the start of the time course, particularly in the levels of amino acids and phospholipid pathway intermediates. Specific flux modulations were detected throughout primary metabolism, including glycolysis, the tricarboxylic acid cycle, nitrogen assimilation, phospholipid/fatty acid synthesis and the shikimate pathway, all of which generate secondary metabolic precursors. CONCLUSION: The response of cell cultures to elicitor treatment involves the extensive reprogramming of primary and secondary metabolism, and associated cofactor biosynthetic pathways. A high-resolution map of the extensive reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures is provided.


Subject(s)
Botrytis/physiology , Papaver/metabolism , Papaver/microbiology , Cell Culture Techniques , Deuterium , Discriminant Analysis , Least-Squares Analysis , Magnetic Resonance Spectroscopy , Papaver/cytology , Plant Extracts/chemistry , Principal Component Analysis , Protons , Time Factors
9.
Planta ; 225(5): 1085-106, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17077972

ABSTRACT

Elicitor-induced sanguinarine accumulation in opium poppy (Papaver somniferum) cell cultures provides a responsive model system to profile modulations in gene transcripts and metabolites related to alkaloid biosynthesis. An annotated expressed sequence tag (EST) database was assembled from 10,224 random clones isolated from an elicitor-treated opium poppy cell culture cDNA library. The most abundant ESTs encoded defense proteins, and enzymes involved in alkaloid metabolism and S-adenosylmethionine-dependent methyl transfer. ESTs corresponding to 40 enzymes involved in the conversion of sucrose to sanguinarine were identified. A corresponding DNA microarray was probed with RNA from cell cultures collected at various time-points after elicitor treatment, and compared with RNA from control cells. Several diverse transcript populations were coordinately induced, with alkaloid biosynthetic enzyme and defense protein transcripts displaying the most rapid and substantial increases. In addition to all known sanguinarine biosynthetic gene transcripts, mRNAs encoding several upstream primary metabolic enzymes were coordinately induced. Fourier transform-ion cyclotron resonance-mass spectrometry was used to characterize the metabolite profiles of control and elicitor-treated cell cultures. Principle component analysis revealed a significant and dynamic separation in the metabolome, represented by 992 independent detected analytes, in response to elicitor treatment. Identified metabolites included sanguinarine, dihydrosanguinarine, and the methoxylated derivatives dihydrochelirubine and chelirubine, and the alkaloid pathway intermediates N-methylcoclaurine, N-methylstylopine, and protopine. Some of the detected analytes showed temporal changes in abundance consistent with modulations in the profiles of alkaloid biosynthetic gene transcripts.


Subject(s)
Gene Expression Regulation, Plant , Papaver/genetics , Transcription, Genetic , Cell Culture Techniques , Cloning, Molecular , DNA, Complementary/genetics , DNA, Plant/genetics , Enzymes/genetics , Expressed Sequence Tags , Gene Expression Profiling , Gene Library , Oligonucleotide Array Sequence Analysis , Papaver/cytology , Papaver/metabolism , Plant Proteins/genetics , RNA, Plant/genetics
10.
Plant J ; 47(4): 547-63, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16813579

ABSTRACT

The benzylisoquinoline alkaloids of opium poppy, including the narcotic analgesics morphine and codeine, accumulate in the multinucleate cytoplasm of specialized laticifers that accompany vascular tissues throughout the plant. In mature opium poppy plants, immunofluorescence labeling using specific antibodies showed that four alkaloid biosynthetic enzymes, (S)-norcoclaurine 6-O-methyltransferase (6OMT), (S)-coclaurine N-methyltransferase (CNMT), (S)-3'-hydroxy-N-methylcoclaurine-4'-O-methyltransferase (4'OMT) and salutaridinol-7-O-acetyltransferase (SAT) were restricted to sieve elements of the phloem adjacent or proximal to laticifers. The identity of sieve elements was confirmed by (i) the specific immunogold labeling of the characteristic cytoplasm of this cell type, (ii) the co-localization of a sieve element-specific H(+)-ATPase with all biosynthetic enzymes and (iii) the strict association of sieve plates with immunofluorescent cells. The localization of laticifers was demonstrated antibodies specific to major latex protein (MLP), which is characteristic of this cell type. In situ hybridization using antisense RNA probes for 6OMT, CNMT, 4'OMT and SAT showed that the corresponding gene transcripts were found in the companion cell paired with each sieve element. Seven benzylisoquinoline alkaloid biosynthetic enzymes, (S)-N-methylcoclaurine 3'-hydroxylase (CYP80B1), berberine bridge enzyme, codeinone reductase, 6OMT, CNMT, 4'OMT and SAT were localized by immunofluorescence labeling to the sieve elements in the root and hypocotyl of opium poppy seedlings. The abundance of these enzymes increased rapidly between 1 and 3 days after seed germination. The localization of seven biosynthetic enzymes to the sieve elements provides strong support for the unique, cell type-specific biosynthesis of benzylisoquinoline alkaloids in the opium poppy.


Subject(s)
Alkaloids/biosynthesis , Papaver/anatomy & histology , Papaver/metabolism , Alkaloids/chemistry , Flowers/metabolism , Molecular Sequence Data , Molecular Structure , Papaver/enzymology , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Stems/anatomy & histology , Plant Stems/metabolism , Seedlings/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...