Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 112: 139-50, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23608524

ABSTRACT

The present study shows the selective light-dependent distribution of 1,2-diacylglycerol kinase epsilon (DAGKɛ) in photoreceptor cells from bovine and albino rat retina. Immunofluorescence microscopy in isolated rod outer segments from bleached bovine retinas (BBROS) revealed a higher DAGKɛ signal than that found in rod outer segments from dark-adapted bovine retinas (BDROS). The light-dependent outer segment localization of DAGKɛ was also observed by immunohistochemistry in retinas from albino rats. DAGK activity, measured in terms of phosphatidic acid formation from a) [(3)H]DAG and ATP in the presence of EGTA and R59022, a type I DAGK inhibitor, or b) [γ-(32)P]ATP and 1-stearoyl, 2-arachidonoylglycerol (SAG), was found to be significantly higher in BBROS than in BDROS. Higher light-dependent DAGK activity (condition b) was also found when ROS were isolated from dark-adapted rat retinas exposed to light. Western blot analysis of isolated ROS proteins from bovine and rat retinas confirmed that illumination increases DAGKɛ content in the outer segments of these two species. Light-dependent DAGKɛ localization in the outer segment was not observed when U73122, a phospholipase C inhibitor, was present prior to the exposure of rat eyecups (in situ model) to light. Furthermore, no increased PA synthesis from [(3)H]DAG and ATP was observed in the presence of neomycin prior to the exposure of bovine eyecups to light. Interestingly, when BBROS were pre-phosphorylated with ATP in the presence of 1,2-dioctanoyl sn-glycerol (di-C8) or phorbol dibutyrate (PDBu) as PKC activation conditions, higher DAGK activity was observed than in dephosphorylated controls. Taken together, our findings suggest that the selective distribution of DAGKɛ in photoreceptor cells is a light-dependent mechanism that promotes increased SAG removal and synthesis of 1-stearoyl, 2-arachidonoyl phosphatidic acid in the sensorial portion of this cell, thus demonstrating a novel mechanism of light-regulated DAGK activity in the photoreceptors of two vertebrate species.


Subject(s)
Diacylglycerol Kinase/metabolism , Photic Stimulation , Rod Cell Outer Segment/enzymology , Rod Cell Outer Segment/radiation effects , Animals , Blotting, Western , Cattle , Dark Adaptation , Diacylglycerol Kinase/antagonists & inhibitors , Egtazic Acid/pharmacology , Enzyme Inhibitors/pharmacology , Estrenes/pharmacology , Fluorescent Antibody Technique, Indirect , Light , Phosphatidic Acids/metabolism , Pyrimidinones/pharmacology , Pyrrolidinones/pharmacology , Rats , Rats, Wistar , Rod Cell Outer Segment/drug effects , Thiazoles/pharmacology
2.
Neurochem Int ; 58(3): 330-6, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21167245

ABSTRACT

The purpose of the present study was to analyze diacylglycerol kinase (DAGK) activity in synaptic terminals from cerebral cortex (CC) and hippocampus (Hp) from adult (3-4 month-old) and aged (26-28 month-old) rats. The effect of insulin through DAGK activity on synaptosomes from adult and aged rats was also analyzed under conditions favoring saturated or unsaturated phosphatidic acid (PA) formation, using exogenous di-palmitoil glycerol (DPG) or 1-stearoyl-2-arachidonoylglycerol (SAG) as substrates. Results showed that the enzymatic activity preferentially uses SAG as substrate, thus indicating the presence of ɛ-type DAGK. A significant decrease in DAGK activity transforming SAG into PA was also observed in both tissues from aged rats. Western blot detection of DAGKɛ showed that enzyme content undergoes no changes with aging. [3H] inositol incorporation into phosphoinosites was also analyzed to evaluate the role of DAGKɛ in their synthesis. Data obtained from 3H-inositol incorporation into phosphoinositides revealed that in synaptosomes from aged rats phosphatidylinositol (PI) synthesis is lower than in adult animals. Interestingly, in the presence of SAG, PI synthesis was restored to adult values. DAGK activity over SAG was more highly stimulated by insulin in CC and Hp synaptosomes of aged rats with respect to adult rats. On the other hand, insulin exerted a stimulatory effect on PI and phosphatidylinositol 4 phosphate (PI(4)P) synthesis in synaptosomal CC from aged rats. Taken together, our findings indicate that in aged rats insulin triggers a stimulatory mechanism that reverts the diminished synaptosomal ability to synthesize arachidonoyl phosphatidic acid (20:4 PA). The recovery of this PA species indicates that insulin positively regulates phosphoinositide synthesis.


Subject(s)
Aging/physiology , Diacylglycerol Kinase/metabolism , Diglycerides/metabolism , Insulin/physiology , Phosphatidylinositols/metabolism , Presynaptic Terminals/physiology , Animals , Diacylglycerol Kinase/antagonists & inhibitors , Phosphatidylinositols/antagonists & inhibitors , Phosphorylation , Presynaptic Terminals/enzymology , Rats , Rats, Wistar , Synaptosomes
3.
Neurochem Res ; 34(7): 1236-48, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19130221

ABSTRACT

The highly efficient formation of phosphatidic acid from exogenous 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) in rat brain synaptic nerve endings (synaptosomes) from cerebral cortex and hippocampus is reported. Phosphatidic acid synthesized from SAG or 1,2-dipalmitoyl-sn-glycerol (DPG) was 17.5 or 2.5 times higher, respectively, than from endogenous synaptosomal diacylglycerides. Insulin increased diacylglycerol kinase (DAGK) action on endogenous substrate in synaptic terminals from hippocampus and cerebral cortex by 199 and 97%, respectively. Insulin preferentially increased SAG phosphorylation from hippocampal membranes. In CC synaptosomes insulin increased phosphatidic acid (PA) synthesis from SAG by 100% with respect to controls. Genistein (a tyrosine kinase inhibitor) inhibited this stimulatory insulin effect. Okadaic acid or cyclosporine, used as Ser/Threo protein phosphatase inhibitors, failed to increase insulin effect on PA formation. GTP gamma S and particularly NaF were potent stimulators of PA formation from polyunsaturated diacylglycerol but failed to increase this phosphorylation when added after 5 min of insulin exposure. GTP gamma S and NaF increased phosphatidylinositol 4,5 bisphosphate (PIP2) labeling with respect to controls when SAG was present. On the contrary, they decreased polyphosphoinositide labeling with respect to controls in the presence of DPG. Our results indicate that a DAGK type 3 (DAGKepsilon) which preferentially, but not selectively, utilizes 1-acyl-2-arachidonoyl-sn-glycerol and which could be associated with polyphosphoinositide resynthesis, participates in synaptic insulin signaling. GTP gamma S and NaF appear to be G protein activators related to insulin and the insulin receptor, both affecting the signaling mechanism that augments phosphatidic acid formation.


Subject(s)
Cerebral Cortex/metabolism , Hippocampus/metabolism , Insulin/pharmacology , Phosphatidic Acids/biosynthesis , Synaptosomes/metabolism , Animals , Chromones/pharmacology , Cyclosporine/pharmacology , Diacylglycerol Kinase/metabolism , Diglycerides/metabolism , Genistein/pharmacology , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology , Insulin Antagonists/pharmacology , Morpholines/pharmacology , Okadaic Acid/pharmacology , Phosphoprotein Phosphatases/antagonists & inhibitors , Piperidines/pharmacology , Pyrimidinones/pharmacology , Quinazolinones/pharmacology , Rats , Rats, Wistar , Sodium Fluoride/pharmacology , Synaptosomes/drug effects , Thiazoles/pharmacology , Vanadates/pharmacology
4.
J Neurosci Res ; 84(5): 1012-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16886188

ABSTRACT

The mechanism by which insulin increases diacylglycerol kinase (DAGK) activity has been studied in cerebral cortex (CC) synaptosomes from adult (3-4 months of age) rats. The purpose of this study was to identify the role of phospholipases C and D (PLC and PLD) in DAGK activation by insulin. Neomycin, an inhibitor of PLC phosphatidylinositol-bisphosphate (PIP2) specific; ethanol, an inhibitor of phosphatidic acid (PA) formation by the promotion of a transphosphatidyl reaction of phosphatidylcholine phospholipase D (PC-PLD); and DL propranolol, an inhibitor of phosphatidate phosphohydrolase (PAP), were used in this study. Insulin (0.1 microM) shielded an increase in PA synthesis by [32P] incorporation using [gamma-32P]ATP as substrate and endogenous diacylglycerol (DAG) as co-substrate. This activated synthesis was strongly inhibited either by ethanol or DL propranolol. Pulse chase experiments also showed a PIP2-PLC activation within 1 min exposure to insulin. When exogenous unsaturated 18:0-20:4 DAG was present, insulin increased PA synthesis significantly. However, this stimulatory effect was not observed in the presence of exogenous saturated (di-16:0). In the presence of R59022, a selective DAGK inhibitor, insulin exerted no stimulatory effect on [32P]PA formation, suggesting a strong relationship between increased PA formation by insulin and DAGK activity. These data indicate that the increased synthesis of PA by insulin could be mediated by the activation of both a PC-PLD pathway to provide DAG and a direct DAGK activation that is associated to the use of 18:0-20:4 DAG species. PIP2-PLC activation may contribute at least partly to the insulin effect on DAGK activity.


Subject(s)
Cerebral Cortex/cytology , Diacylglycerol Kinase/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Synaptosomes/drug effects , Adenosine Triphosphate/metabolism , Animals , Enzyme Activation/drug effects , Neomycin/pharmacology , Phosphatidate Phosphatase/metabolism , Phosphatidylcholines/metabolism , Phospholipase D/physiology , Phosphorus Isotopes/metabolism , Protein Synthesis Inhibitors/pharmacology , Rats , Rats, Wistar , Type C Phospholipases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...