Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 51(2): 1007-1018, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38153187

ABSTRACT

BACKGROUND: Heating around deep brain stimulation (DBS) in magnetic resonance imaging (MRI) occurs when the time-varying electromagnetic (EM) fields induce currents in the electrodes which can generate heat and potentially cause tissue damage. Predicting the heating around the electrode contacts is important to ensure the safety of patients with DBS implants undergoing an MRI scan. We previously proposed a workflow to predict heating around DBS contacts and introduced a parameter, equivalent transimpedance, that is independent of electrode trajectories, termination, and radiofrequency (RF) excitations. The workflow performance was validated in a unilateral DBS system. PURPOSE: To predict RF heating around the contacts of bilateral (DBS) electrodes during an MRI scan in an anthropomorphic head phantom. METHODS: Bilateral electrodes were fixed in a skull phantom filled with hydroxyethyl cellulose (HEC) gel. The electrode shafts were suspended extracranially, in a head and torso phantom filled with the same gel material. The current induced on the electrode shaft was experimentally measured using an MR-based technique 3 cm above the tip. A transimpedance value determined in a previous offline calibration was used to scale the shaft current and calculate the contact voltage. The voltage was assigned as a boundary condition on the electrical contacts of the electrode in a quasi-static (EM) simulation. The resulting specific absorption rate (SAR) distribution became the input for a transient thermal simulation and was used to predict the heating around the contacts. RF heating experiments were performed for eight different lead trajectories using circularly polarized (CP) excitation and two linear excitations for one trajectory. The measured temperatures for all experiments were compared with the simulated temperatures and the root-mean-squared errors (RMSE) were calculated. RESULTS: The RF heating around the contacts of both bilateral electrodes was predicted with ≤ 0.29°C of RMSE for 20 heating scenarios. CONCLUSION: The workflow successfully predicted the heating for different bilateral DBS trajectories and excitation patterns in an anthropomorphic head phantom.


Subject(s)
Deep Brain Stimulation , Heating , Humans , Deep Brain Stimulation/methods , Workflow , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Imaging/methods , Electrodes , Radio Waves , Phantoms, Imaging , Electrodes, Implanted
2.
Magn Reson Med ; 90(6): 2627-2642, 2023 12.
Article in English | MEDLINE | ID: mdl-37533196

ABSTRACT

PURPOSE: The purpose of this study is to present a strategy to calculate the implant-friendly (IF) excitation modes-which mitigate the RF heating at the contacts of deep brain stimulation (DBS) electrodes-of multichannel RF coils at 7 T. METHODS: An induced RF current on an implantable electrode generates a scattered magnetic field whose left-handed circularly polarizing component ( B 1 + $$ B{1}^{+} $$ ) is approximated using a B 1 + $$ B{1}^{+} $$ -mapping technique and subsequently used as a gauge for the electrode's induced current. Using this approach, the relative induced currents resulting from each channel of a multichannel RF coil on the DBS electrode were calculated. The IF modes of the corresponding multichannel coil were determined by calculating the null space of the relative induced currents. The proposed strategy was tested and validated for unilateral and bilateral commercial DBS electrodes (directional lead; Infinity DBS system, Abbott Laboratories) placed inside a uniform phantom by performing heating and imaging studies on a 7T MRI scanner using a 16-channel transceive RF coil. RESULTS: Neither individual IF modes nor shim solutions obtained from IF modes induced significant temperature increase when used for a high-power turbo spin-echo sequence. In contrast, shimming with the scanner's toolbox (i.e., based on per-channel B 1 + $$ B{1}^{+} $$ fields) resulted in a more than 2°C temperature increase for the same amount of input power. CONCLUSION: A strategy for calculating the IF modes of a multichannel RF coil is presented. This strategy was validated using a 16-channel RF coil at 7 T for unilateral and bilateral commercial DBS electrodes inside a uniform phantom.


Subject(s)
Deep Brain Stimulation , Deep Brain Stimulation/methods , Magnetic Resonance Imaging/methods , Electrodes, Implanted , Phantoms, Imaging , Radio Waves
3.
Magn Reson Med ; 88(5): 2311-2325, 2022 11.
Article in English | MEDLINE | ID: mdl-35781696

ABSTRACT

PURPOSE: The purpose of this study is to present a workflow for predicting the radiofrequency (RF) heating around the contacts of a deep brain stimulation (DBS) lead during an MRI scan. METHODS: The induced RF current on the DBS lead accumulates electric charge on the metallic contacts, which may cause a high local specific absorption rate (SAR), and therefore, heating. The accumulated charge was modeled by imposing a voltage boundary condition on the contacts in a quasi-static electromagnetic (EM) simulation allowing thermal simulations to be performed with the resulting SAR distributions. Estimating SAR and temperature increases from a lead in vivo through EM simulation is not practical given anatomic differences and variations in lead geometry. To overcome this limitation, a new parameter, transimpedance, was defined to characterize a given lead. By combining the transimpedance, which can be measured in a single calibration scan, along with MR-based current measurements of the lead in a unique orientation and anatomy, local heating can be estimated. Heating determined with this approach was compared with results from heating studies of a commercial DBS electrode in a gel phantom with different lead configurations to validate the proposed method. RESULTS: Using data from a single calibration experiment, the transimpedance of a commercial DBS electrode (directional lead, Infinity DBS system, Abbott Laboratories, Chicago, IL) was determined to be 88 Ω. Heating predictions using the DBS transimpedance and rapidly acquired MR-based current measurements in 26 different lead configurations resulted in a <23% (on average 11.3%) normalized root-mean-square error compared to experimental heating measurements during RF scans. CONCLUSION: In this study, a workflow consisting of an MR-based current measurement on the DBS lead and simple quasi-static EM/thermal simulations to predict the temperature increase around a DBS electrode undergoing an MRI scan is proposed and validated using a commercial DBS electrode.


Subject(s)
Deep Brain Stimulation , Deep Brain Stimulation/methods , Electrodes , Electrodes, Implanted , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Radio Waves , Temperature , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...