Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 10(10)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34680839

ABSTRACT

Abscess formation is a common complication of severe life-threatening infections caused by obligate anaerobes. Fusobacterium necrophorum is among the frequently detected anaerobic pathogens from clinical specimens associated with liver abscesses, skin and soft tissue infections, or oral abscesses. The antimicrobial therapy for this kind of infection needs to be optimized. Here, we examined the possibility of treating F. necrophorum-induced abscess wound infections with candidate therapeutics based on three endolysins with activity against a broad spectrum of aerobe Gram-negative pathogens. Antibacterial gel containing three Gram-negative bacteria-targeting endolysins, LysAm24, LysAp22, and LysECD7, was formulated for topical use. Abscess formation was induced in rabbits with F. necrophorum and caused systemic infection. The survival and lifespan of the animals, general parameters, and biochemical and hematological blood tests were analyzed to assess the effectiveness of the gel treatment for the wound infection. The administration of the investigated gel twice per day for 5 days resulted in less acute inflammation, with decreased leukocytes and segmented neutrophils in the blood, retardation of infection progression, and an almost two-fold increase in the lifespan of the animals compared to the placebo group. The results indicate that endolysin-based therapy is an effective approach to treat anaerobic bacterial infections. The use of endolysins as independent pharmaceuticals, or their combination with antibiotics, could significantly reduce the development of complications in infectious diseases caused by sensitive bacterial species.

2.
Langmuir ; 35(7): 2832-2841, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30685974

ABSTRACT

A method based on nanosecond laser processing was used to design superhydrophilic and superhydrophobic copper substrates. Three different protocols were used to analyze the evolution of the bactericidal activity of the copper substrates with different wettability. Scanning electron microscopy was used to study the variation of cell morphology after the attachment to superhydrophilic and superhydrophobic surfaces. The dispersions of Escherichia coli K12 C600 and Klebsiella pneumoniae 811 in Luria Bertani broth in contact with the superhydrophilic copper surface showed enhanced bacterial inactivation, associated with toxic action of both hierarchically textured copper surface and high content of Cu2+ ions in the dispersion medium. In contrast, the bacterial dispersions in contact with the superhydrophobic copper substrates demonstrated an increase in cell concentration with time until the development of corrosion processes. The resistance of bacterial cells to contact the copper substrates is discussed on the basis of surface forces, determining the primary adhesion and of the protective action of a superhydrophobic state of the surface against electrochemical and biological corrosion.


Subject(s)
Alloys/pharmacology , Anti-Bacterial Agents/pharmacology , Copper/pharmacology , Corrosion , Electric Conductivity , Escherichia coli K12/drug effects , Hydrophobic and Hydrophilic Interactions , Klebsiella pneumoniae/drug effects , Surface Properties , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...