Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 5929, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207334

ABSTRACT

Variant of concern (VOC) Omicron-BA.1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and animal models are urgently needed. Here, we characterize Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in hamsters, ferrets and hACE2-expressing mice, and immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In hamsters, Delta shows dominance over Omicron-BA.1, and in ferrets Omicron-BA.1 infection is abortive. In hACE2-knock-in mice, Delta and a Delta spike clone also show dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naïve K18-hACE2 mice, we observe Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of replication and pathogenicity. Finally, the Omicron-BA.1 spike clone is less well-controlled by mRNA-vaccination in K18-hACE2-mice and becomes more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Ferrets , Humans , Melphalan , Mice , Phenotype , RNA, Messenger , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , gamma-Globulins
2.
STAR Protoc ; 3(4): 101688, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36116074

ABSTRACT

Here, we present a protocol to analyze the T cell profiles of the neonatal ovine lung during respiratory syncytial virus (RSV) infection. The protocol delivers standardized multiparameter flow cytometry (FCM) analysis of CD4+, CD8+, regulatory, and γδ T cells isolated from lung, lymph nodes, and bronchoalveolar lavages (BALs). We detail the preparation of RSV and transtracheal inoculation of newborn lambs. We then describe tissue isolation and preparation of cell suspensions, followed by FCM acquisition to identify different T cell subsets. For complete details on the use and execution of this protocol, please refer to Démoulins et al. (2021).


Subject(s)
Respiratory Syncytial Virus Infections , Animals , Sheep , Respiratory Syncytial Virus Infections/pathology , Flow Cytometry , Respiratory Syncytial Viruses , Lung/pathology , T-Lymphocyte Subsets
3.
STAR Protoc ; 3(2): 101291, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35463475

ABSTRACT

We present a protocol to generate an advanced ex vivo model of human placenta. We use a vibrating tissue slicer to obtain precision-cut slices representative of the entire thickness of human placenta. This approach delivers standardized cultures with a preserved microstructure and cellular composition comparable to the native tissue. We applied this system to study SARS-CoV-2 infection at the maternal-fetal interface. Moreover, this system can be used to investigate the basic functions of the human placenta in health and disease. For complete details on the use and execution of this protocol, please refer to Fahmi et al. (2021).


Subject(s)
COVID-19 , SARS-CoV-2 , Female , Humans , Placenta , Pregnancy
4.
Cell Rep Med ; 2(12): 100456, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34751258

ABSTRACT

The ongoing SARS-CoV-2 pandemic continues to lead to high morbidity and mortality. During pregnancy, severe maternal and neonatal outcomes and placental pathological changes have been described. We evaluate SARS-CoV-2 infection at the maternal-fetal interface using precision-cut slices (PCSs) of human placenta. Remarkably, exposure of placenta PCSs to SARS-CoV-2 leads to a full replication cycle with infectious virus release. Moreover, the susceptibility of placental tissue to SARS-CoV-2 replication relates to the expression levels of ACE2. Viral proteins and/or viral RNA are detected in syncytiotrophoblasts, cytotrophoblasts, villous stroma, and possibly Hofbauer cells. While SARS-CoV-2 infection of placenta PCSs does not cause a detectable cytotoxicity or a pro-inflammatory cytokine response, an upregulation of one order of magnitude of interferon type III transcripts is measured. In conclusion, our data demonstrate the capacity of SARS-CoV-2 to infect and propagate in human placenta and constitute a basis for further investigation of SARS-CoV-2 biology at the maternal-fetal interface.


Subject(s)
Placenta/virology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/transmission , COVID-19/virology , Chorionic Villi/virology , Female , Humans , Infectious Disease Transmission, Vertical , Interferons/metabolism , Placenta/cytology , Placenta/metabolism , Pregnancy , RNA, Viral/metabolism , Trophoblasts/cytology , Trophoblasts/virology , Viral Proteins/metabolism , Virus Release , Virus Replication , Interferon Lambda
5.
PLoS Pathog ; 17(7): e1009789, 2021 07.
Article in English | MEDLINE | ID: mdl-34320038

ABSTRACT

Lung-resident (LR) mesenchymal stem and stromal cells (MSCs) are key elements of the alveolar niche and fundamental regulators of homeostasis and regeneration. We interrogated their function during virus-induced lung injury using the highly prevalent respiratory syncytial virus (RSV) which causes severe outcomes in infants. We applied complementary approaches with primary pediatric LR-MSCs and a state-of-the-art model of human RSV infection in lamb. Remarkably, RSV-infection of pediatric LR-MSCs led to a robust activation, characterized by a strong antiviral and pro-inflammatory phenotype combined with mediators related to T cell function. In line with this, following in vivo infection, RSV invades and activates LR-MSCs, resulting in the expansion of the pulmonary MSC pool. Moreover, the global transcriptional response of LR-MSCs appears to follow RSV disease, switching from an early antiviral signature to repair mechanisms including differentiation, tissue remodeling, and angiogenesis. These findings demonstrate the involvement of LR-MSCs during virus-mediated acute lung injury and may have therapeutic implications.


Subject(s)
Acute Lung Injury/immunology , Acute Lung Injury/virology , Lung/immunology , Mesenchymal Stem Cells/immunology , Respiratory Syncytial Virus Infections/immunology , Animals , Humans , Lung/cytology , Lung/metabolism , Mesenchymal Stem Cells/metabolism , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus, Human/immunology , Sheep
6.
PLoS Pathog ; 17(4): e1009529, 2021 04.
Article in English | MEDLINE | ID: mdl-33909707

ABSTRACT

The human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants, possibly due to the properties of the immature neonatal pulmonary immune system. Using the newborn lamb, a classical model of human lung development and a translational model of RSV infection, we aimed to explore the role of cell-mediated immunity in RSV disease during early life. Remarkably, in healthy conditions, the developing T cell compartment of the neonatal lung showed major differences to that seen in the mature adult lung. The most striking observation being a high baseline frequency of bronchoalveolar IL-4-producing CD4+ and CD8+ T cells, which declined progressively over developmental age. RSV infection exacerbated this pro-type 2 environment in the bronchoalveolar space, rather than inducing a type 2 response per se. Moreover, regulatory T cell suppressive functions occurred very early to dampen this pro-type 2 environment, rather than shutting them down afterwards, while γδ T cells dropped and failed to produce IL-17. Importantly, RSV disease severity was related to the magnitude of those unconventional bronchoalveolar T cell responses. These findings provide novel insights in the mechanisms of RSV immunopathogenesis in early life, and constitute a major step for the understanding of RSV disease severity.


Subject(s)
Lung/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Tract Infections/immunology , T-Lymphocytes/pathology , Animals , Animals, Newborn , Cell Differentiation/immunology , Cells, Cultured , Child, Preschool , Disease Models, Animal , Disease Progression , Humans , Lung/growth & development , Lung/pathology , Lung/virology , Respiratory Syncytial Virus Infections/congenital , Respiratory Syncytial Virus Infections/pathology , Respiratory Tract Infections/congenital , Respiratory Tract Infections/pathology , Sheep/growth & development , Sheep/immunology , T-Lymphocytes/immunology , T-Lymphocytes/physiology
8.
NPJ Vaccines ; 3: 41, 2018.
Article in English | MEDLINE | ID: mdl-30302283

ABSTRACT

Inactivated vaccines lack immunogenicity and therefore require potent adjuvants. To understand the in vivo effects of adjuvants, we used a system immunology-based analysis of ovine blood transcriptional modules (BTMs) to dissect innate immune responses relating to either antibody or haptoglobin levels. Using inactivated foot-and-mouth disease virus as an antigen, we compared non-adjuvanted to liposomal-formulated vaccines complemented or not with TLR4 and TLR7 ligands. Early after vaccination, BTM relating to myeloid cells, innate immune responses, dendritic cells, and antigen presentation correlated positively, whereas BTM relating to T and natural killer cells, as well as cell cycle correlated negatively with antibody responses. Interestingly, similar BTM also correlated with haptoglobin, but in a reversed manner, indicating that acute systemic inflammation is not beneficial for early antibody responses. Analysis of vaccine-dependent BTM modulation showed that liposomal formulations induced similar responses to those correlating to antibody levels. Surprisingly, the addition of the TLR ligands appeared to reduce early immunological perturbations and mediated anti-inflammatory effects, despite promoting antibody responses. When pre-vaccination BTM were analyzed, we found that high vaccine responders expressed higher levels of many BTM relating to cell cycle, antigen-presenting cells, and innate responses as compared with low responders. In conclusion, we have transferred human BTM to sheep and identified early vaccine-induced responses associated with antibody levels or unwanted inflammation in a heterogeneous and small group of animals. Such readouts are applicable to other veterinary species and very useful to identify efficient vaccine adjuvants, their mechanism of action, and factors related to low responders.

9.
Sci Rep ; 8(1): 5440, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615676

ABSTRACT

While Zika virus (ZIKV) circulated for decades (African lineage strains) without report of outbreaks and severe complications, its emergence in French Polynesia and subsequently in the Americas (Asian lineage strains) was associated with description of severe neurological defects in newborns/neonates and adults. With the aim to identify virus lineage-dependent factors, we compared cell susceptibility, virus replication, cell death and innate immune responses following infection with two African and three contemporary Asian lineage strains of ZIKV. To this end, we used green monkey Vero and Aedes albopictus C6/36 cells and human monocyte-derived dendritic cells (DCs). The latter are involved in the pathogenesis of several mosquito-borne Flavivirus infections. In Vero and C6/36 cells, we observed strain- but not lineage-dependent differences in infection profiles. Nevertheless, in human DCs, no significant differences in susceptibility and virus replication were found between lineages and strains. ZIKV induced antiviral interferon type I/III in a limited fashion, with the exception of one African strain. None of the strains induced cell death or DC maturation in terms of MHC II, CD40, CD80/86 or CCR7 expression. Taken together, our data suggest that a large collection of virus isolates needs to be investigated before conclusions on lineage differences can be made.


Subject(s)
Dendritic Cells/virology , Zika Virus/physiology , Animals , Chlorocebus aethiops , Dendritic Cells/metabolism , Gene Expression Regulation , Humans , Interferons/genetics , Species Specificity , Vero Cells
10.
Sci Rep ; 7(1): 16379, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29180817

ABSTRACT

Studies in the mouse model indicate that the nucleoprotein of influenza A virus represents an interesting vaccine antigen being well conserved across subtypes of influenza virus but still able to induce protective immune responses. Here we show that immunizations of pigs with vesicular stomatitis virus- and classical swine fever virus-derived replicon (VRP) particles expressing the nucleoprotein (NP) of H1N1 A/swine/Belzig/2/01 induced potent antibody and T-cell responses against influenza A virus. In contrast to a conventional whole inactivated virus vaccine, the VRP vaccines induced both NP-specific CD4 and CD8 T cells responses, including interferon-γ and tumor-necrosis-factor dual-secreting cell. Although T-cells and antibody responses were cross-reactive with the heterologous H1N2 A/swine/Bakum/R757/2010 challenge virus, they did not provide protection against infection. Surprisingly, vaccinated pigs showed enhanced virus shedding, lung inflammation and increased levels of systemic and lung interferon-α as well as elevated lung interleukin-6. In conclusion, our study shows that NP, although efficacious in the mouse model, appears not to be a promising stand-alone vaccine antigen for pigs.


Subject(s)
Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Virion/immunology , Animals , Antibodies, Viral/immunology , Cell Line , Cytokines/metabolism , Genetic Vectors/genetics , Influenza A virus/genetics , Influenza Vaccines/genetics , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Swine , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Viral Load , Virion/genetics
11.
Front Immunol ; 7: 253, 2016.
Article in English | MEDLINE | ID: mdl-27446083

ABSTRACT

This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4(+) T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value.

12.
Vet Res ; 47: 34, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26911997

ABSTRACT

Pigs are considered to be the main amplifying host for Japanese encephalitis virus (JEV), and their infection can correlate with human cases of disease. Despite their importance in the ecology of the virus as it relates to human cases of encephalitis, the pathogenesis of JEV in pigs remains obscure. In the present study, the localization and kinetics of virus replication were investigated in various tissues after experimental intravenous infection of pigs. The data demonstrate a rapid and broad spreading of the virus to the central nervous system (CNS) and various other organs. A particular tropism of JEV in pigs not only to the CNS but also for secondary lymphoid tissue, in particular the tonsils with the overall highest viral loads, was observed. In this organ, even 11 days post infection, the latest time point of the experiment, no apparent decrease in viral RNA loads and live virus was found despite the presence of a neutralizing antibody response. This was also well beyond the clinical and viremic phase. These results are of significance for the pathogenesis of JEV, and call for further experimental studies focusing on the cellular source and duration of virus replication in pigs.


Subject(s)
Central Nervous System/virology , Encephalitis Virus, Japanese/physiology , Encephalitis, Japanese/veterinary , Lymphoid Tissue/virology , Swine Diseases/virology , Viremia/veterinary , Animals , Encephalitis Virus, Japanese/growth & development , Encephalitis, Japanese/virology , Palatine Tonsil/virology , Swine , Tropism , Viral Load/veterinary , Viremia/virology
13.
Nat Commun ; 7: 10832, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26902924

ABSTRACT

Japanese encephalitis virus (JEV), a main cause of severe viral encephalitis in humans, has a complex ecology, composed of a cycle involving primarily waterbirds and mosquitoes, as well as a cycle involving pigs as amplifying hosts. To date, JEV transmission has been exclusively described as being mosquito-mediated. Here we demonstrate that JEV can be transmitted between pigs in the absence of arthropod vectors. Pigs shed virus in oronasal secretions and are highly susceptible to oronasal infection. Clinical symptoms, virus tropism and central nervous system histological lesions are similar in pigs infected through needle, contact or oronasal inoculation. In all cases, a particularly important site of replication are the tonsils, in which JEV is found to persist for at least 25 days despite the presence of high levels of neutralizing antibodies. Our findings could have a major impact on the ecology of JEV in temperate regions with short mosquito seasons.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese/transmission , Animals , Brain/pathology , Encephalitis, Japanese/pathology , Female , Male , Palatine Tonsil/virology , Swine , Virus Shedding
14.
Microbiology (Reading) ; 158(Pt 10): 2652-2660, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22878396

ABSTRACT

Species in the genus Naegleria are free-living amoebae of the soil and warm fresh water. Although around 30 species have been recognized, Naegleria fowleri is the only one that causes primary amoebic meningoencephalitis (PAM) in humans. PAM is an acute and fast progressing disease affecting the central nervous system. Most of the patients die within 1-2 weeks of exposure to the infectious water source. The fact that N. fowleri causes such fast progressing and highly lethal infections has opened many questions regarding the relevant pathogenicity factors of the amoeba. In order to investigate the pathogenesis of N. fowleri under defined experimental conditions, we developed a novel high- versus low-pathogenicity model for this pathogen. We showed that the composition of the axenic growth media influenced growth behaviour and morphology, as well as in vitro cytotoxicity and in vivo pathogenicity of N. fowleri. Trophozoites maintained in Nelson's medium were highly pathogenic for mice, demonstrated rapid in vitro proliferation, characteristic expression of surface membrane vesicles and a small cell diameter, and killed target mouse fibroblasts by both contact-dependent and -independent destruction. In contrast, N. fowleri cultured in PYNFH medium exhibited a low pathogenicity, slower growth, increased cell size and contact-dependent target cell destruction. However, cultivation of the amoeba in PYNFH medium supplemented with liver hydrolysate (LH) resulted in trophozoites that were highly pathogenic in mice, and demonstrated an intermediate proliferation rate in vitro, diminished cell diameter and contact-dependent target cell destruction. Thus, in this model, the presence of LH resulted in increased proliferation of trophozoites in vitro and enhanced pathogenicity of N. fowleri in mice. However, neither in vitro cytotoxicity mechanisms nor the presence of membrane vesicles on the surface correlated with the pathologic potential of the amoeba. This indicated that the pathogenicity of N. fowleri remains a complex interaction between as-yet-unidentified cellular mechanisms.


Subject(s)
Amebiasis/physiopathology , Central Nervous System Protozoal Infections/physiopathology , Naegleria fowleri/pathogenicity , Amebiasis/parasitology , Animals , Central Nervous System Protozoal Infections/parasitology , Culture Media/chemistry , Disease Models, Animal , Fibroblasts/cytology , Fibroblasts/parasitology , Humans , Hydrolysis , L Cells , Liver , Mice , Naegleria fowleri/growth & development , Naegleria fowleri/physiology , Severity of Illness Index , Trophozoites/growth & development
15.
J Am Assoc Lab Anim Sci ; 51(2): 219-23, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22776122

ABSTRACT

The oral route is the most frequently used method of drug intake in humans. Oral administration of drugs to laboratory animals such as mice typically is achieved through gavage, in which a feeding needle is introduced into the esophagus and the drug is delivered directly into the stomach. This method requires technical skill, is stressful for animals, and introduces risk of injury, pain and morbidity. Here we investigated another method of drug administration. The benzimidazole derivative albendazole was emulsified in commercially available honey and administered to mice by voluntary feeding or gavage. Mice that received albendazole by either gavage or honey ingestion had virtually identical levels of serum albendazole sulfoxide, indicating that uptake and metabolism of albendazole was similar for both administration techniques. In addition, dosing mice with the albendazole-honey mixture for 8 wk had antiparasitic activity comparable to earlier studies using gavage for drug administration. Compared with gavage, voluntary ingestion of a drug in honey is more rapid, less stressful to the animal, and less technically demanding for the administrator. Because of its low cost and ready availability, honey presents a viable vehicle for drug delivery.


Subject(s)
Albendazole/administration & dosage , Anticestodal Agents/administration & dosage , Drug Carriers , Emulsifying Agents/administration & dosage , Honey , Administration, Oral , Albendazole/blood , Animals , Anticestodal Agents/blood , Carboxymethylcellulose Sodium/administration & dosage , Chromatography, High Pressure Liquid/veterinary , Drug Carriers/economics , Echinococcosis/drug therapy , Echinococcosis/veterinary , Emulsifying Agents/economics , Female , Honey/economics , Mice , Mice, Inbred BALB C , Rodent Diseases/drug therapy
16.
Exp Parasitol ; 126(1): 45-53, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20036656

ABSTRACT

Free-living amoebae (FLA) belonging to Acanthamoeba spp., Naegleria fowleri, Balamuthia mandrillaris, and Sappinia pedata are known to cause infections in humans and animals leading to severe brain pathologies. Worldwide, warm aquatic environments have been found to be suitable habitats for pathogenic FLA. The present study reports on screening for potentially pathogenic FLA in four hot spring resorts in Switzerland. Water samples were taken from water filtration units and from the pools, respectively. Amoebae isolated from samples taken during, or before, the filtration process were demonstrated to be morphologically and phylogenetically related to Stenoamoeba sp., Hartmannella vermiformis, Echinamoeba exundans, and Acanthamoeba healyi. With regard to the swimming pools, FLA were isolated only in one resort, and the isolate was identified as non-pathogenic and as related to E. exundans. Further investigations showed that the isolates morphologically and phylogenetically related to A. healyi displayed a pronounced thermotolerance, and exhibited a marked in vitro cytotoxicity upon 5-day exposure to murine L929 fibroblasts. Experimental intranasal infection of Rag2-immunodeficient mice with these isolates led to severe brain pathologies, and viable trophozoites were isolated from the nasal mucosa, brain tissue, and lungs post mortem. In summary, isolates related to A. healyi were suggestive of being potentially pathogenic to immunocompromised persons. However, the presence of these isolates was limited to the filtration units, and an effective threat for health can therefore be excluded.


Subject(s)
Amebiasis/parasitology , Amoebozoa/isolation & purification , Hot Springs/parasitology , Amoebozoa/classification , Amoebozoa/genetics , Amoebozoa/pathogenicity , Animals , Brain/parasitology , Humans , Immunocompromised Host , Lung/parasitology , Mice , Mice, Inbred BALB C , Phylogeny , Polymerase Chain Reaction , Switzerland
17.
Cancer Res ; 66(11): 5867-74, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16740726

ABSTRACT

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL) belongs to the TNF family known to transduce their death signals via cell membrane receptors. Because it has been shown that Apo2L/TRAIL induces apoptosis in tumor cells without or little toxicity to normal cells, this cytokine became of special interest for cancer research. Unfortunately, cancer cells are often resistant to Apo2L/TRAIL-induced apoptosis; however, this can be at least partially negotiated by parallel treatment with other substances, such as chemotherapeutic agents. Here, we report that cardiac glycosides, which have been used for the treatment of cardiac failure for many years, sensitize lung cancer cells but not normal human peripheral blood mononuclear cells to Apo2L/TRAIL-induced apoptosis. Sensitization to Apo2L/TRAIL mediated by cardiac glycosides was accompanied by up-regulation of death receptors 4 (DR4) and 5 (DR5) on both RNA and protein levels. The use of small interfering RNA revealed that up-regulation of death receptors is essential for the demonstrated augmentation of apoptosis. Blocking of up-regulation of DR4 and DR5 alone significantly reduced cell death after combined treatment with cardiac glycosides and Apo2L/TRAIL. Combined silencing of DR4 and DR5 abrogated the ability of cardiac glycosides and Apo2L/TRAIL to induce apoptosis in an additive manner. To our knowledge, this is the first demonstration that glycosides up-regulate DR4 and DR5, thereby reverting the resistance of lung cancer cells to Apo2/TRAIL-induced apoptosis. Our data suggest that the combination of Apo2L/TRAIL and cardiac glycosides may be a new interesting anticancer treatment strategy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis Regulatory Proteins/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cardenolides/pharmacology , Cardiac Glycosides/pharmacology , Lung Neoplasms/drug therapy , Membrane Glycoproteins/pharmacology , Receptors, Tumor Necrosis Factor/biosynthesis , Tumor Necrosis Factor-alpha/pharmacology , Apoptosis/drug effects , Apoptosis Regulatory Proteins/administration & dosage , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cardenolides/administration & dosage , Cardiac Glycosides/administration & dosage , Cell Line, Tumor , Drug Synergism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Membrane Glycoproteins/administration & dosage , RNA, Small Interfering/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand , Receptors, Tumor Necrosis Factor/genetics , TNF-Related Apoptosis-Inducing Ligand , Tumor Necrosis Factor-alpha/administration & dosage , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...