Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(52): 79053-79066, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35701704

ABSTRACT

The increasing landscape alterations due to anthropogenic activities is of global concern since it affects aquatic ecosystems, often resulting in compromise of the ecological integrity and the water quality. In this sense, the evaluation, monitoring, and prediction of the aquatic ecosystem quality becomes an important research subject. This study presents the first integrated water quality assessment of the Sauce Grande River Basin, in Argentina, based on the spatial distribution of the phytoplankton community, the physicochemical parameters, and the metal concentrations (Cd, Cu, Cr, Fe, Mn, Ni, Pb, and Zn) found in the particulate fraction. According to the trophic indices and the phytoplankton abundance, composition, and diversity, the water quality showed significant deterioration in the lower basin after the Sauce Grande lake. The trophic state index indicated that water was oligotrophic in over 75% of the sampling sites, increasing downstream, where two sites were characterized as mesotrophic, and one described as hypertrophic. The phytoplankton community was dominated by diatoms in zones with low anthropogenic impact and conductivity, whereas high densities of Euglenophyta, Chlorophyta, and Cyanobacteria were found in the middle-lower basin, associated with higher organic matter and eutrophication. The conductivity, turbidity, and most metal concentrations also increased towards the downstream area, even exceeding recommended levels for the metals Cu, Cr, Mn, and Pb in the middle and lower reaches of the basin (Cu: 3.5 µg L-1; Cr: 2.4 µg L-1; Pb: 1.2 µg L-1; Mn 170 µg L-1). This study generates a database for the water quality of the Sauce Grande River Basin and sets an example of how the water quality varies along a basin that crosses different topographic environments, land covers, and anthropogenic influences.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Water Quality , Phytoplankton , Ecosystem , Metals, Heavy/analysis , Environmental Monitoring , Argentina , Cadmium/analysis , Lead/analysis , Water Pollutants, Chemical/analysis , Risk Assessment , Geologic Sediments/chemistry
2.
Bioresour Technol ; 216: 302-7, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27253478

ABSTRACT

The valorization of Rhizoclonium sp. algae through pyrolysis for obtaining bio-oils is studied in this work. The reaction is carried out at 400°C, at high contact time. The bio-oil has a practical yield of 35% and is rich in phytol. Besides, it is simpler than the corresponding to lignocellulosic biomass due to the absence of phenolic compounds. This property leads to a bio-oil relatively stable to storage. In addition, heterogeneous catalysts (Al-Fe/MCM-41, SBA-15 and Cu/SBA-15), in contact with algae during pyrolysis, are analyzed. The general trend is that the catalysts decrease the concentration of fatty alcohols and other high molecular weight products, since their mild acidity sites promote degradation reactions. Thus, the amount of light products increases upon the use of the catalysts. Particularly, acetol concentration in the bio-oils obtained from the catalytic pyrolysis with SBA-15 and Cu/SBA-15 is notably high.


Subject(s)
Biofuels/microbiology , Chlorophyta/metabolism , Biomass , Catalysis , Oils/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...