Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biochem ; 120(2): 2391-2403, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30277611

ABSTRACT

Endoplasmic reticulum stress (ERS) is usually involved in tumor development and progression, and anticancer agents have recently been recognized to induce ERS. Cucurbitacin-I showed a potent anticancer action by inducing apoptosis through the inhibition of signal transducer and activator of transcription 3 pathway and triggering autophagic cell death. It is not known whether ERS mediates the cancer cell death induced by cucurbitacin-I. Here, we investigated the role of ERS in cucurbitacin-I-treated SKOV3 ovarian cancer cells and PANC-1 pancreatic cancer cells. We confirmed that cucurbitacin-I caused cell death and stirred excessive ERS levels by activating inositol requiring enzyme 1α (IRE1α) and protein kinase R-like endoplasmic reticulum kinase (PERK), as well as PERK downstream factors, including IRE1α and C/EBP homologous protein, but not activating transcription factor 6 (ATF6α) pathway, which was in parallel with the increased Bax and caspase-12-dependent ERS-associated apoptosis, autophagy and autophagy flux levels and caspase-independent nonapoptotic cell death. Furthermore, 4-phenylbutyrate, an ERS inhibitor, suppressed cucurbitacin-I-induced apoptosis, autophagy, autophagy flux, and autophagic cell death. Simultaneously, there are positive correlations among ERS and cucurbitacin-I-induced reactive oxygen species and Ca 2+ . Our results suggested that cucurbitacin-I-induced cancer cell death through the excessive ERS and CHOP-Bax and caspase-12-dependent ERS-associated apoptosis, as well as ERS-dependent autophagy, autophagy flux, and caspase-independent nonapoptotic cell death. These novel signaling insights may be useful for developing new, effective anticancer strategies in oncotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...