Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell Rep Med ; 3(3): 100563, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35492878

ABSTRACT

The hepatic venous pressure gradient (HVPG) is the gold standard for cirrhotic portal hypertension (PHT), but it is invasive and specialized. Alternative non-invasive techniques are needed to assess the hepatic venous pressure gradient (HVPG). Here, we develop an auto-machine-learning CT radiomics HVPG quantitative model (aHVPG), and then we validate the model in internal and external test datasets by the area under the receiver operating characteristic curves (AUCs) for HVPG stages (≥10, ≥12, ≥16, and ≥20 mm Hg) and compare the model with imaging- and serum-based tools. The final aHVPG model achieves AUCs over 0.80 and outperforms other non-invasive tools for assessing HVPG. The model shows performance improvement in identifying the severity of PHT, which may help non-invasive HVPG primary prophylaxis when transjugular HVPG measurements are not available.


Subject(s)
Artificial Intelligence , Hypertension, Portal , Diagnostic Imaging , Humans , Hypertension, Portal/diagnostic imaging , Liver Cirrhosis/complications , Portal Pressure
2.
BMJ Open ; 10(6): e030960, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32580978

ABSTRACT

INTRODUCTION: Gastro-oesophageal variceal bleeding is one of the most common and severe complications with high mortality in cirrhotic patients who developed portal hypertension. Hepatic venous pressure gradient (HVPG) is a globally recommended golden standard for the portal pressure assessment and an HVPG ≥16 mm Hg indicates a higher risk of death and rebleeding. This study aims to compare the effectiveness and safety of splenectomy and pericardial devascularisation (laparoscopic therapy) plus propranolol and endoscopic therapy plus propranolol for variceal rebleeding in cirrhotic patients with HVPG between 16 and 20 mm Hg. METHODS AND ANALYSIS: This is a multicenter, randomised, controlled clinical trial. Participants will be 1:1 assigned randomly into either laparoscopic or endoscopic groups. Forty participants whose transjugular HVPG lies between 16 and 20 mm Hg with a history of gastro-oesophageal variceal bleeding will be recruited from three sites in China. Participants will receive either endoscopic therapy plus propranolol or laparoscopic therapy plus propranolol. The primary outcome measure will be the occurrence of gastro-oesophageal variceal rebleeding. Secondary outcome measures will include overall survival, occurrence of hepatocellular carcinoma, the occurrence of venous thrombosis, the occurrence of adverse events, quality of life and tolerability of treatment. Outcome measures will be evaluated at baseline, 12 weeks, 24 weeks, 36 weeks, 48 weeks and 60 weeks. Multivariate COX regression model will be introduced for analyses of occurrence data and Kaplan-Meier analysis with the log-rank test for intergroup comparison. ETHICS AND DISSEMINATION: Ethical approval was obtained from all three participating sites. Primary and secondary outcome data will be submitted for publication in peer-reviewed journals and widely disseminated. TRIAL REGISTRATION NUMBER: NCT03783065; Pre-results. TRIAL STATUS: Recruitment for this study started in December 2018 while the first participant was randomised in January 2019. Recruitment is estimated to stop in October 2019.


Subject(s)
Esophageal and Gastric Varices/etiology , Esophageal and Gastric Varices/surgery , Gastrointestinal Hemorrhage/prevention & control , Hypertension, Portal/complications , Laparoscopy/methods , Splenectomy/methods , China , Combined Modality Therapy , Humans , Multicenter Studies as Topic , Portal Pressure , Propranolol/therapeutic use , Randomized Controlled Trials as Topic , Recurrence , Research Design , Secondary Prevention
3.
Clin Gastroenterol Hepatol ; 18(13): 2998-3007.e5, 2020 12.
Article in English | MEDLINE | ID: mdl-32205218

ABSTRACT

BACKGROUND & AIMS: Noninvasive and accurate methods are needed to identify patients with clinically significant portal hypertension (CSPH). We investigated the ability of deep convolutional neural network (CNN) analysis of computed tomography (CT) or magnetic resonance (MR) to identify patients with CSPH. METHODS: We collected liver and spleen images from patients who underwent contrast-enhanced CT or MR analysis within 14 days of transjugular catheterization for hepatic venous pressure gradient measurement. The CT cohort comprised participants with cirrhosis in the CHESS1701 study, performed at 4 university hospitals in China from August 2016 through September 2017. The MR cohort comprised participants with cirrhosis in the CHESS1802 study, performed at 8 university hospitals in China and 1 in Turkey from December 2018 through April 2019. Patients with CSPH were identified as those with a hepatic venous pressure gradient of 10 mm Hg or higher. In total, we analyzed 10,014 liver images and 899 spleen images collected from 679 participants who underwent CT analysis, and 45,554 liver and spleen images from 271 participants who underwent MR analysis. For each cohort, participants were shuffled and then sampled randomly and equiprobably for 6 times into training, validation, and test data sets (ratio, 3:1:1). Therefore, a total of 6 deep CNN models for each cohort were developed for identification of CSPH. RESULTS: The CT-based CNN analysis identified patients with CSPH with an area under the receiver operating characteristic curve (AUC) value of 0.998 in the training set (95% CI, 0.996-1.000), an AUC of 0.912 in the validation set (95% CI, 0.854-0.971), and an AUC of 0.933 (95% CI, 0.883-0.984) in the test data sets. The MR-based CNN analysis identified patients with CSPH with an AUC of 1.000 in the training set (95% CI, 0.999-1.000), an AUC of 0.924 in the validation set (95% CI, 0.833-1.000), and an AUC of 0.940 in the test data set (95% CI, 0.880-0.999). When the model development procedures were repeated 6 times, AUC values for all CNN analyses were 0.888 or greater, with no significant differences between rounds (P > .05). CONCLUSIONS: We developed a deep CNN to analyze CT or MR images of liver and spleen from patients with cirrhosis that identifies patients with CSPH with an AUC value of 0.9. This provides a noninvasive and rapid method for detection of CSPH (ClincialTrials.gov numbers: NCT03138915 and NCT03766880).


Subject(s)
Hypertension, Portal , Humans , Hypertension, Portal/complications , Hypertension, Portal/diagnosis , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Neural Networks, Computer , Portal Pressure
4.
EBioMedicine ; 36: 151-158, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30268833

ABSTRACT

Clinically significant portal hypertension (CSPH) is associated with an incremental risk of esophageal varices and overt clinical decompensations. However, hepatic venous pressure gradient (HVPG) measurement, the gold standard for defining CSPH (HVPG≥10 mm Hg) is invasive and therefore not suitable for routine clinical practice. This study aims to develop and validate a radiomics-based model as a noninvasive method for accurate detection of CSPH in cirrhosis. The prospective multicenter diagnostic trial (CHESS1701, ClinicalTrials.gov identifier: NCT03138915) involved 385 patients with cirrhosis from five liver centers in China between August 2016 and September 2017. Patients who had both HVPG measurement and contrast-enhanced CT within 14 days prior to the catheterization were collected. The noninvasive radiomics model, termed rHVPG for CSPH was developed based on CT images in a training cohort consisted of 222 consecutive patients and the diagnostic performance was prospectively assessed in 163 consecutive patients in four external validation cohorts. rHVPG showed a good performance in detection of CSPH with a C-index of 0·849 (95%CI: 0·786-0·911). Application of rHVPG in four external prospective validation cohorts still gave excellent performance with the C-index of 0·889 (95%CI: 0·752-1·000, 0·800 (95%CI: 0·614-0·986), 0·917 (95%CI: 0·772-1·000), and 0·827 (95%CI: 0·618-1·000), respectively. Intraclass correlation coefficients for inter- and intra-observer agreement were 0·92-0·99 and 0·97-0·99, respectively. A radiomics signature was developed and prospectively validated as an accurate method for noninvasive detection of CSPH in cirrhosis. The tool of rHVPG assessment can facilitate the identification of CSPH rapidly when invasive transjugular procedure is not available.


Subject(s)
Biomarkers , Hypertension, Portal/diagnostic imaging , Hypertension, Portal/etiology , Liver Cirrhosis/complications , Liver Cirrhosis/diagnostic imaging , Tomography, X-Ray Computed , Female , Humans , Hypertension, Portal/blood , Image Processing, Computer-Assisted , Liver Cirrhosis/blood , Male , Observer Variation , ROC Curve , Reproducibility of Results , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/standards
5.
Oncol Rep ; 38(4): 2166-2172, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28849112

ABSTRACT

In recent years it was found that the synthesis and biological activity of ribosomes are closely associated with tumor cell growth, tumorigenesis, and malignant transformation. However, the role of regulator of ribosome synthesis 1 (RRS1) in hepatocellular carcinoma (HCC) has not yet been reported. In the present study, we aimed to examine the potential role of RRS1 in tumor cell growth by using a lentivirus-mediated RNA interference (RNAi) system in the HCC cell line SMMC-7721 in vitro. Compared with that of the negative control group (Lv-shCon), the mRNA and protein expression levels of RRS1 in SMMC-7721 cells transfected with Lv-shRRS1 were significantly decreased. Further experiments found that silencing of RRS1 gene expression in SMMC-7721 cells significantly suppressed cell proliferation, inhibited colony formation capacity, increased apoptosis and arrested cells in the G1 phase. These results suggest that the RRS1 gene plays a critical role in cell proliferation, colony formation, cell apoptosis and cell cycle distribution in human HCC cells, and that silencing of RRS1 by RNAi is a promising therapeutic approach for the treatment of HCC, and should be further developed.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Proliferation/genetics , Liver Neoplasms/genetics , Nuclear Proteins/genetics , Apoptosis/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Knockdown Techniques , Humans , Lentivirus/genetics , Liver Neoplasms/pathology , Male , Nuclear Proteins/antagonists & inhibitors , RNA Interference , RNA, Messenger/genetics , RNA-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...