Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 132: 155820, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39004032

ABSTRACT

OBJECTIVE: This study aimed to explore the potential mechanisms of Buyang Huanwu Decoction (BHD) in regulating the AKT/TP53 pathway and reducing inflammatory responses for the treatment of chronic cerebral ischemia (CCI) using UHPLC-QE-MS combined with network pharmacology, molecular docking techniques, and animal experiment validation. METHODS: Targets of seven herbal components in BHD, such as Astragalus membranaceus, Paeoniae Rubra Radix, and Ligusticum chuanxiong, were identified through TCMSP and HERB databases. CCI-related targets were obtained from DisGeNET and Genecards, with an intersection analysis conducted to determine shared targets between the disease and the herbal components. Functional enrichment analysis of these intersecting targets was performed. Networks of gene ontology and pathway associations with these targets were constructed and visualized. A pharmacological network involving intersecting genes and active components was delineated. A protein-protein interaction network was established for these intersecting targets and visualized using Cytoscape 3.9.1. The top five genes from the PPI network and their corresponding active components underwent molecular docking. Finally, the 2-vessel occlusion (2-VO) induced CCI rat model was treated with BHD, and the network pharmacology findings were validated using Western blot, RT-PCR, behavioral tests, laser speckle imaging, ELISA, HE staining, Nissl staining, LFB staining, and immunohistochemistry and immunofluorescence. RESULTS: After filtration and deduplication, 150 intersecting genes were obtained, with the top five active components by Degree value identified as Quercetin, Beta-Sitosterol, Oleic Acid, Kaempferol, and Succinic Acid. KEGG pathway enrichment analysis linked key target genes significantly with Lipid and atherosclerosis, AGE-RAGE signaling pathway, IL-17 signaling pathway, and TNF signaling pathway. The PPI network highlighted ALB, IL-6, AKT1, TP53, and IL-1ß as key protein targets. Molecular docking results showed the strongest binding affinity between ALB and Beta-Sitosterol. Behavioral tests using the Morris water maze indicated that both medium and high doses of BHD could enhance spatial memory in 2-VO model rats, with high-dose BHD being more effective. Laser speckle results showed that BHD at medium and high doses could facilitate CBF recovery in CCI rats, demonstrating a dose-response relationship. HE staining indicated that all doses of BHD could reduce neuronal damage in the cortex and hippocampal CA1 region to varying extents, with the highest dose being the most efficacious. Nissl staining showed that nimodipine and medium and high doses of BHD could alleviate Nissl body damage. LFB staining indicated that nimodipine and medium and high doses of BHD could reduce the pathological damage to fiber bundles and myelin sheaths in the internal capsule and corpus callosum of CCI rats. ELISA results showed that nimodipine and BHD at medium and high doses could decrease the levels of TNF-α, IL-6, IL-17, and IL-1ß in the serum of CCI rats (p < 0.05). Immunohistochemistry and immunofluorescence demonstrated that BHD could activate the AKT signaling pathway and inhibit TP53 in treating CCI. Western blot and RT-PCR results indicated that nimodipine and all doses of BHD could upregulate Akt1 expression and downregulate Alb, Tp53, Il-1ß, and Il-6 expression in the hippocampus of CCI rats to varying degrees (p < 0.05). CONCLUSION: BHD exerts therapeutic effects in the treatment of CCI by regulating targets, such as AKT1, ALB, TP53, IL-1ß, and IL-6, and reducing inflammatory responses.

2.
J Med Chem ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989847

ABSTRACT

Despite being a highly sought-after therapeutic target for human malignancies, myelocytomatosis viral oncogene homologue (MYC) has been considered intractable due to its intrinsically disordered nature, making the discovery of in vivo effective inhibitors that directly block its function challenging. Herein, we report structurally novel alkynyl-substituted phenylpyrazole derivatives directly perturbing MYC function. Among them, compound 37 exhibited superior antiproliferative activities to those of MYCi975 against multiple malignant cell lines. It induced dose-dependent MYC degradation in cells with degradation observed at the concentration as low as 1.0 µM. Meanwhile, its direct suppression of MYC function was confirmed by the capability to inhibit the binding of MYC/MYC-associated protein X (MAX) heterodimer to DNA consensus sequence, induce MYC thermal instability, and disturb MYC/MAX interaction. Moreover, 37 demonstrated enhanced therapeutic efficacy over MYCi975 in a mouse allograft model of prostate cancer. Overall, 37 deserves further development for exploring MYC-targeting cancer therapeutics.

3.
Nanoscale ; 16(13): 6522-6530, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38477150

ABSTRACT

Extensive studies have been carried out on silver nanowires (AgNWs) in view of their impressive conductivity and highly flexible one-dimensional structure. They are seen as a promising choice for producing deformable transparent conductors. Nonetheless, the widespread adoption of AgNW-based transparent conductors is hindered by critical challenges represented by the significant contact resistance at the nanowire junctions and inadequate interfacial adhesion between the nanowires and the substrate. This study presents a novel solution to tackle the aforementioned challenges by capitalizing on liquid metal microcapsules (LMMs). Upon exposure to acid vapor, the encapsulated LMMs rupture, releasing the fluid LM which then forms a metallic overlay and hybridizes with the underlying Ag network. As a result, a transparent conductive film with greatly enhanced electrical and mechanical properties was obtained. The transparent conductor displays negligible resistance variation even after undergoing chemical stability, adhesion, and bending tests, and ultrasonic treatment. This indicates its outstanding adhesion strength to the substrate and mechanical flexibility. The exceptional electrical properties and robust mechanical stability of the transparent conductor position it as an ideal choice for direct integration into flexible touch panels and wearable strain sensors, as evidenced in this study. By resolving the critical challenges in this field, the proposed strategy establishes a compelling roadmap to navigate the development of high-performance AgNW-based transparent conductors, setting a solid foundation for further advancement in the field of deformable electronics.

4.
Int Immunopharmacol ; 129: 111652, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38335657

ABSTRACT

Psoriasis is a chronic, autoimmune skin disease characterized by the deregulated secretion of inflammatory factors in multiple organs. The aberrant activation of signal transducer and activator of transcription 3 (STAT3) signaling pathway mediated by cyclin-dependent kinase 9 (CDK9) is vital for the pathology of psoriasis, leading to the accumulation of inflammatory factors and the progression of skin damage. In this study, we explored the effect of CDK9 inhibition on attenuating the secretion of inflammatory factors and alleviating skin damage in psoriasis models both in vitro and in vivo. Results showed that Atuveciclib, a highly selective CDK9 inhibitor, significantly relieved skin lesions in Imiquimod (IMQ)-induced mice models by lowering the expression of CDK9 and p-RNA Pol II Ser2. Meanwhile, Atuveciclib significantly inhibited STAT3 phosphorylation in mice skin and reduced the levels of key inflammatory cytokines in mice skin, plasma and spleen. In addition to suppressing the secretion of inflammatory cytokines, Atuveciclib ablated the activation of STAT3 induced by tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ). Overall, our findings indicated that the overexpression and hyperfunction of CDK9 promote the progression of psoriasis. Moreover, Atuveciclib interfered with the abnormal STAT3 signaling pathway through the inhibition of CDK9, which ultimately ameliorated psoriatic-like skin inflammation. These suggested that CDK9 inhibition is a potential strategy for batting psoriasis.


Subject(s)
Dermatitis , Psoriasis , Skin Diseases , Sulfonamides , Triazines , Animals , Mice , Imiquimod/pharmacology , STAT3 Transcription Factor/metabolism , Cyclin-Dependent Kinase 9 , Psoriasis/chemically induced , Psoriasis/drug therapy , Inflammation/chemically induced , Signal Transduction , Cytokines/metabolism
5.
Article in English | MEDLINE | ID: mdl-38167826

ABSTRACT

Pulmonary fibrosis (PF) is a horrible lung disease that causes pulmonary ventilation dysfunction and respiratory failure, severely impacting sufferers' physical and mental health. Existing drugs can only partially control the condition and are prone to toxic side effects. Anti-inflammatory treatment is the committed step to alleviate PF. Celastrol (CLT) has significant anti-inflammatory effects and can reverse M1-type transformation of macrophages. In this study, we have developed liposomes loaded with CLT, modified with folate (FA), designated FA-CLT-Lips, which facilitate drug delivery by targeting macrophages. FA-CLT-Lips were shown to be more readily absorbed by macrophages in vitro and to encourage the transition of M1 macrophages into M2 macrophages. In addition, FA-CLT-Lips can inhibit the phosphorylation of Smad2/3, effectively reducing the deposition of extracellular matrix (ECM) and the production of inflammatory factors. This showed that FA-CLT-Lips can ameliorate early lung fibrosis by lowering inflammation. In vivo studies have shown that FA-CLT-Lips accumulate in lung tissue to better attenuate lung injury and collagen deposition, with less toxicity compared to free CLT. In summary, FA receptor-targeting liposomes loaded with CLT provide a secure and reliable PF therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...