Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Commun Biol ; 6(1): 1248, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38071238

ABSTRACT

Intestine is a highly radiation-sensitive organ that could be injured during the radiotherapy for pelvic, abdominal, and retroperitoneal tumors. However, the dynamic change of the intestinal microenvironment related to radiation-induced intestine injury (RIII) is still unclear. Using single-cell RNA sequencing, we pictured a dynamic landscape of the intestinal microenvironment during RIII and regeneration. We showed that the various cell types of intestine exhibited heterogeneous radiosensitivities. We revealed the distinct dynamic patterns of three subtypes of intestinal stem cells (ISCs), and the cellular trajectory analysis suggested a complex interconversion pattern among them. For the immune cells, we found that Ly6c+ monocytes can give rise to both pro-inflammatory macrophages and resident macrophages after RIII. Through cellular communication analysis, we identified a positive feedback loop between the macrophages and endothelial cells, which could amplify the inflammatory response induced by radiation. Besides, we identified different T cell subtypes and revealed their role in immunomodulation during the early stage of RIII through inflammation and defense response relevant signaling pathways. Overall, our study provides a valuable single-cell map of the multicellular dynamics during RIII and regeneration, which may facilitate the understanding of the mechanism of RIII.


Subject(s)
Intestinal Diseases , Radiation Injuries , Humans , Endothelial Cells/pathology , Intestines/pathology , Radiation Injuries/metabolism , Stem Cells/metabolism , Cellular Microenvironment
2.
Ann Clin Transl Neurol ; 10(12): 2179-2191, 2023 12.
Article in English | MEDLINE | ID: mdl-37846148

ABSTRACT

OBJECTIVE: Further understanding of the function and regulatory mechanism of cholinergic neural circuits and related neurodegenerative diseases. METHODS: This review summarized the research progress of the central cholinergic nervous system, especially for the cholinergic circuit of the medial septal nucleus-hippocampus, vertical branch of diagonal band-hippocampus, basal nucleus of Meynert-cerebral cortex cholinergic loop, amygdala, pedunculopontine nucleus, and striatum-related cholinergic loops. RESULTS: The extensive and complex fiber projection of cholinergic neurons form the cholinergic neural circuits, which regulate several nuclei in the brain through neurotransmission and participate in learning and memory, attention, emotion, movement, etc. The loss of cholinergic neurotransmitters, the reduction, loss, and degeneration of cholinergic neurons or abnormal theta oscillations and cholinergic neural circuits can induce cognitive disorders such as AD, PD, PDD, and DLB. INTERPRETATION: The projection and function of cholinergic fibers in some nuclei and the precise regulatory mechanisms of cholinergic neural circuits in the brain remain unclear. Further investigation of cholinergic fiber projections in various brain regions and the underlying mechanisms of the neural circuits are expected to open up new avenues for the prevention and treatment of senile neurodegenerative diseases.


Subject(s)
Central Nervous System , Neurodegenerative Diseases , Humans , Hippocampus , Cerebral Cortex , Cholinergic Agents
3.
Neurobiol Dis ; 179: 106062, 2023 04.
Article in English | MEDLINE | ID: mdl-36878328

ABSTRACT

Single-cell and single-nucleus RNA sequencing (scRNA-seq and snRNA-seq) technologies have emerged as revolutionary and powerful tools, which have helped in achieving significant progress in biomedical research over the last decade. scRNA-seq and snRNA-seq resolve heterogeneous cell populations from different tissues and help reveal the function and dynamics at the single-cell level. The hippocampus is an essential component for cognitive functions, including learning, memory, and emotion regulation. However, the molecular mechanisms underlying the activity of hippocampus have not been fully elucidated. The development of scRNA-seq and snRNA-seq technologies provides strong support for attaining an in-depth understanding of hippocampal cell types and gene expression regulation from the single-cell transcriptome profiling perspective. This review summarizes the applications of scRNA-seq and snRNA-seq in the hippocampus to further expand our knowledge of the molecular mechanisms related to hippocampal development, health, and diseases.


Subject(s)
Gene Expression Profiling , Transcriptome , Sequence Analysis, RNA , RNA, Small Nuclear , Hippocampus
4.
Adv Sci (Weinh) ; 10(11): e2205988, 2023 04.
Article in English | MEDLINE | ID: mdl-36755196

ABSTRACT

Whether the nonthermal effects of radiofrequency radiation (RFR) exist and how nonthermal RFR acts on the nervous system are unknown. An animal model of spatial memory impairment is established by exposing mice to 2856-MHz RFR in the range of thermal noise (≤1 °C). Glutamate release in the dorsal hippocampus (dHPC) CA1 region is not significantly changed after radiofrequency exposure, whereas dopamine release is reduced. Importantly, RFR enhances glutamatergic CA1 pyramidal neuron calcium activity by nonthermal mechanisms, which recover to the basal level with RFR termination. Furthermore, suppressed dHPC dopamine release induced by radiofrequency exposure is due to decreased density of dopaminergic projections from the locus coeruleus to dHPC, and artificial activation of dopamine axon terminals or D1 receptors in dHPC CA1 improve memory damage in mice exposed to RFR. These findings indicate that nonthermal radiofrequency stimulation modulates ongoing neuronal activity and affects nervous system function at the neural circuit level.


Subject(s)
Dopamine , Radio Waves , Mice , Animals , Neurons
5.
Front Cell Neurosci ; 16: 898164, 2022.
Article in English | MEDLINE | ID: mdl-35966202

ABSTRACT

Electromagnetic pulse (EMP) is a high-energy pulse with an extremely rapid rise time and a broad bandwidth. The brain is a target organ sensitive to electromagnetic radiation (EMR), the biological effects and related mechanisms of EMPs on the brain remain unclear. The objectives of the study were to assess the effects of EMP exposure on mouse cognitions, and the neuronal calcium activities in vivo under different cases of real-time exposure and post exposure. EMP-treated animal model was established by exposing male adult C57BL/6N mice to 300 kV/m EMPs. First, the effects of EMPs on the cognitions, including the spatial learning and memory, avoidance learning and memory, novelty-seeking behavior, and anxiety, were assessed by multiple behavioral experiments. Then, the changes in the neuronal activities of the hippocampal CA1 area in vivo were detected by fiber photometry in both cases of during real-time EMP radiation and post-exposure. Finally, the structures of neurons in hippocampi were observed by optical microscope and transmission electron microscope. We found that EMPs under this condition caused a decline in the spatial learning and memory ability in mice, but no effects on the avoidance learning and memory, novelty-seeking behavior, and anxiety. The neuron activities of hippocampal CA1 were disturbed by EMP exposure, which were inhibited during EMP exposure, but activated immediately after exposure end. Additionally, the CA1 neuron activities, when mice entered the central area in an Open field (OF) test or explored the novelty in a Novel object exploration (NOE) test, were inhibited on day 1 and day 7 after radiation. Besides, damaged structures in hippocampal neurons were observed after EMP radiation. In conclusion, EMP radiation impaired the spatial learning and memory ability and disturbed the neuronal activities in hippocampal CA1 in mice.

6.
Front Cell Dev Biol ; 10: 915654, 2022.
Article in English | MEDLINE | ID: mdl-35874838

ABSTRACT

The intestinal tract is composed of different cell lineages with distinct functions and gene expression profiles, providing uptake of nutrients and protection against insults to the gut lumen. Changes in or damage to the cellulosity or local environment of the intestinal tract can cause various diseases. Single-cell RNA sequencing (scRNA-seq) is a powerful tool for profiling and analyzing individual cell data, making it possible to resolve rare and intermediate cell states that are hardly observed at the bulk level. In this review, we discuss the application of intestinal tract scRNA-seq in identifying novel cell subtypes and states, targets, and explaining the molecular mechanisms involved in intestinal diseases. Finally, we provide future perspectives on using single-cell techniques to discover molecular and cellular targets and biomarkers as a new approach for developing novel therapeutics for intestinal diseases.

7.
Chemosphere ; 306: 135651, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35820476

ABSTRACT

Continuous pulsation regeneration combustion of soot is employed for sine and cosine simulation study. Data showed that pressure uniformity of sine condition is better than that of cosine condition with the maximum pressure difference of 4353.5 Pa under the same simulation boundary conditions. The maximum regeneration temperature under cosine pressure is 46.12 K which is higher than that in sine form. Regeneration combustion reaction zone tends to be more stable laminar flow and Reynolds number of sine condition is 435.23 less than that of under cosine condition. The maximum Stanton number of cosine pressure condition is 3.67 and that of sine pressure condition is 5.15, which investigates heat transfer capacity of the sine pressure condition is better than that of the pressure of cosine form. The regeneration efficiency of inlet gradually increased from the minimum regeneration efficiency 74.18%-88.45% of sine and cosine. The soot under both pressure forms has achieved complete regeneration and the regeneration efficiency has exceeded 88% of porous medium filter body section. The soot regeneration combustion efficiency of the porous media filter section and outlet section is more sufficient under sine condition and the heat carried by the fluid can maintain the soot regeneration.


Subject(s)
Soot , Vehicle Emissions , Dust , Motor Vehicles , Soot/analysis , Temperature , Vehicle Emissions/analysis
8.
J Cancer ; 13(2): 401-412, 2022.
Article in English | MEDLINE | ID: mdl-35069890

ABSTRACT

Chronic stress induced by long-term anxiety and depression can promote the malignant progression of gastric cancer. ß2-adrenergic receptor (ß2-AR) is a critical mediator for chronic stress-induced multiple processes of tumor cells. However, the function of chronic stress in gastric cancer and its potential mechanisms in vivo and in vitro, especially at the cellular level, remain unknown. Here, we provide further evidence that chronic stress affected behavior and hypothalamus pituitary adrenal axis related hormone levels in mice. Furthermore, immunofluorescence showed that emotion affected the expression of epithelial-mesenchymal transition (EMT) markers in patients' tissues. To address this, salbutamol, a specific agonist of ß2-AR, was utilized for simulating chronic stress and demonstrating the mechanism of stress in tumor progression at the molecular level both in vivo and in vitro. Salbutamol significantly induced EMT, migration and invasion via ERK (Extracellular-signal-regulated kinase) phosphorylation, and the effects were reversed by the ß2-AR antagonist ICI-118,551. The promoting effects of salbutamol on EMT, migration and invasion were inhibited by phosphorylation inhibitor of ERK PD98059 in vitro. Analysis of xenograft models revealed that salbutamol significantly promoted tumor growth and adrenal volume, while ICI-118,551 inhibited these effects. In addition, salbutamol increased the expression of mesenchymal marker N-cadherin and decreased epithelial marker E-cadherin in transplanted tumor tissue. In conclusion, salbutamol simulates a chronic stress model, which promotes tumorigenesis of gastric cancer cells through ß2-AR/ERK/EMT pathway.

9.
Front Public Health ; 9: 691880, 2021.
Article in English | MEDLINE | ID: mdl-34485223

ABSTRACT

With the rapid development of electronic information in the past 30 years, technical achievements based on electromagnetism have been widely used in various fields pertaining to human production and life. Consequently, electromagnetic radiation (EMR) has become a substantial new pollution source in modern civilization. The biological effects of EMR have attracted considerable attention worldwide. The possible interaction of EMR with human organs, especially the brain, is currently where the most attention is focused. Many studies have shown that the nervous system is an important target organ system sensitive to EMR. In recent years, an increasing number of studies have focused on the neurobiological effects of EMR, including the metabolism and transport of neurotransmitters. As messengers of synaptic transmission, neurotransmitters play critical roles in cognitive and emotional behavior. Here, the effects of EMR on the metabolism and receptors of neurotransmitters in the brain are summarized.


Subject(s)
Cell Phone , Brain , Electromagnetic Radiation , Humans , Neurotransmitter Agents , Radio Waves
10.
Front Endocrinol (Lausanne) ; 12: 767785, 2021.
Article in English | MEDLINE | ID: mdl-34992578

ABSTRACT

Thymosin ß4 (Tß4) is a multifunctional and widely distributed peptide that plays a pivotal role in several physiological and pathological processes in the body, namely, increasing angiogenesis and proliferation and inhibiting apoptosis and inflammation. Moreover, Tß4 is effectively utilized for several indications in animal experiments or clinical trials, such as myocardial infarction and myocardial ischemia-reperfusion injury, xerophthalmia, liver and renal fibrosis, ulcerative colitis and colon cancer, and skin trauma. Recent studies have reported the potential application of Tß4 and its underlying mechanisms. The present study reveals the progress regarding functions and applications of Tß4.


Subject(s)
Apoptosis/physiology , Inflammation/metabolism , Signal Transduction/physiology , Thymosin/physiology , Animals , Apoptosis/drug effects , Humans , Signal Transduction/drug effects , Thymosin/pharmacology
11.
Front Med (Lausanne) ; 8: 775523, 2021.
Article in English | MEDLINE | ID: mdl-34993211

ABSTRACT

Diabetic wounds are recalcitrant to healing. One of the important characteristics of diabetic trauma is impaired macrophage polarization with an excessive inflammatory response. Many studies have described the important regulatory roles of microRNAs (miRNAs) in macrophage differentiation and polarization. However, the differentially expressed miRNAs involved in wound healing and their effects on diabetic wounds remain to be further explored. In this study, we first identified differentially expressed miRNAs in the inflammation, tissue formation and reconstruction phases in wound healing using Illumina sequencing and RT-qPCR techniques. Thereafter, the expression of musculus (mmu)-miR-145a-5p ("miR-145a-5p" for short) in excisional wounds of diabetic mice was identified. Finally, expression of miR-145a-5p was measured to determine its effects on macrophage polarization in murine RAW 264.7 macrophage cells and wound healing in diabetic mice. We identified differentially expressed miRNAs at different stages of wound healing, ten of which were further confirmed by RT-qPCR. Expression of miR-145a-5p in diabetic wounds was downregulated during the tissue formation stage. Furthermore, we observed that miR-145a-5p blocked M1 macrophage polarization while promoting M2 phenotype activation in vitro. Administration of miR-145a-5p mimics during initiation of the repair phase significantly accelerated wound healing in db/db diabetic mice. In conclusion, our findings suggest that rectifying macrophage function using miR-145a-5p overexpression accelerates diabetic chronic wound healing.

12.
J Chem Neuroanat ; 109: 101857, 2020 11.
Article in English | MEDLINE | ID: mdl-32918997

ABSTRACT

In this study, rat pheochromocytoma (PC12) cells were induced into an Alzheimer's Disease (AD) neuronal model using nerve growth factor (NGF; 50 ng/mL) and Amyloid ß25-35 (20 µmol/L). Changes in the morphological structure, cell viability, apoptosis rate, and expression of apoptosis-related protein induced by exposure to a power frequency electromagnetic field (PF-MF; 50 Hz, 100 µT, 24 h) were detected respectively by light and electron microscopy, the MTT assay, immunohistochemistry, flow cytometry and enzyme-linked immunosorbent assays. The results showed that 3-12 h after PF-MF exposure, the pathological injury was improved partly; metabolic activity was promoted and cell apoptosis was inhibited in the AD neuronal model. In addition, PF-MF exposure significantly inhibited the expression of Caspase8, Caspase3, and CytC, but increased the Bcl-2/Bax ratio of the AD neuronal model. Meanwhile, PF-MF seemed to have no effect on the expression of Fas and TNFR1. This study indicated that the mitochondria/caspase-dependent apoptotic pathway plays an important role in the positive effects of PF-MF on an AD neuronal model. The results suggested that PF-MF exposure might have potential therapeutic value for AD, and the underling molecular mechanisms still need further studies.


Subject(s)
Alzheimer Disease/metabolism , Apoptosis/physiology , Caspases/metabolism , Electromagnetic Fields , Mitochondria/metabolism , Neurons/metabolism , Animals , Apoptosis/radiation effects , Cell Differentiation/drug effects , Cell Survival/physiology , Cell Survival/radiation effects , Mitochondria/radiation effects , Nerve Growth Factor/pharmacology , Neurons/drug effects , Neurons/radiation effects , PC12 Cells , Rats
13.
Sci Total Environ ; 741: 140213, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32603937

ABSTRACT

Previous studies have shown that humic substances can serve as electron shuttle to catalyze bioreduction of structural Fe(III) in clay minerals, but it is unclear if clay-sorbed humic substances can serve the same function. It is unknown if the electron shuttling function is dependent on electron donor type and if humic substances undergo change as a result. In this study, humic acid (HA) and fulvic acid (FA) were sorbed onto nontronite (NAu-2) surface. Structural Fe(III) in HA- and FA-coated NAu-2 samples was bioreduced by Shewanella putrefaciens CN32 using H2 and lactate as electron donors. The results showed a contrasting effect of humic substances on bioreduction of structural Fe(III), depending on the electron donor type. With H2 as electron donor, humic substances had little effect on bioreduction of Fe(III) (the reduction extent: 26.2%, 27.4%, 29.3% for HA-coated, FA-coated, and uncoated NAu-2, respectively). In contrast, these substances significantly enhanced bioreduction of Fe(III) with lactate as electron donor (the reduction extent: 20.2%, 20.7%, 11.5% for HA-coated, FA-coated, and uncoated NAu-2, respectively). This contrasting behavior is likely caused by the difference in reaction free energy and electron transport process between H2 and lactate. When H2 served as electron donor, more energy was released than when lactate served as electron donor. In addition, because of different cellular locations of lactate dehydrogenase (inner membrane) and H2 hydrogenase (the periplasm), electrons generated by H2 hydrogenase may pass through the electron transport chain more rapidly than those generated from lactate dehydrogenase. Through their functions as electron shuttle and/or carbon source, clay-sorbed HA/FA underwent partial transformation to amino acids and other compounds. The availability of external carbon source played an important role in the amount and type of secondary product generation. These results have important implications for coupled iron and carbon biogeochemical cycles in clay- and humic substance-rich environments.


Subject(s)
Shewanella putrefaciens , Clay , Ferric Compounds , Humic Substances , Iron , Oxidation-Reduction
14.
Int J Pharm ; 583: 119384, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32371003

ABSTRACT

The brain is the most sensitive organ to microwave radiation. However, few effective drugs are available for the treatment of microwave-induced brain injury due to the poor drug permeation into the brain. Here, intranasal tetrandrine (TET) temperature-sensitive in situ hydrogels (ISGs) were prepared with poloxamers 407 and 188. Its characteristics were evaluated, including rheological properties, drug release in vitro, and mucosal irritation. The pharmacodynamics and brain-targeting effects were also studied. The highly viscous ISGs remained in the nasal cavity for a long time with the sustained release of TET and no obvious ciliary toxicity. Intranasal temperature-sensitive TET ISGs markedly improved the spatial memory and spontaneous exploratory behavior induced by microwave with the Morris water maze (MWM) and the open field test (OFT) compared to the model. The ISGs alleviated the microwave-induced brain damage and inhibited the certain mRNA expressions of calcium channels in the brain. Intranasal temperature-sensitive TET ISGs was rapidly absorbed with a shorter Tmax (4.8 h) compared to that of oral TET (8.4 h). The brain targeting index of intranasal temperature-sensitive TET ISGs was as 2.26 times as that of the oral TET. Intranasal temperature-sensitive TET ISGs are a promising brain-targeted medication for the treatment of microwave-induced brain injury.


Subject(s)
Benzylisoquinolines/administration & dosage , Brain Injuries/drug therapy , Brain/drug effects , Calcium Channel Blockers/administration & dosage , Calcium Channels/drug effects , Poloxamer/chemistry , Stimuli Responsive Polymers/chemistry , Temperature , Administration, Intranasal , Administration, Oral , Animals , Behavior, Animal/drug effects , Benzylisoquinolines/chemistry , Benzylisoquinolines/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain/pathology , Brain/physiopathology , Brain Injuries/etiology , Brain Injuries/metabolism , Brain Injuries/psychology , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Delayed-Action Preparations , Disease Models, Animal , Drug Compounding , Drug Liberation , Hydrogels , Male , Microwaves , Rats, Wistar , Tissue Distribution , Viscosity
15.
Int J Med Sci ; 15(14): 1658-1666, 2018.
Article in English | MEDLINE | ID: mdl-30588189

ABSTRACT

In a previous study, we reported the positive effects of extremely low frequency electromagnetic field (ELF-MF) exposure on Alzheimer's disease (AD) rats; however, the underlying mechanism remains unclear. In addition, we found that Raf-1 kinase inhibitor protein (RKIP) was downregulated by microwave exposure in the rat hippocampus. Our hypothesis was that RKIP-mediated NF-κB pathway signaling is involved in the effect of ELF-MF on the AD rat. In this study, D-galactose intraperitoneal (50 mg/kg/d for 42 d) and Aß25-35 hippocampal (5 µL/unilateral, bilateral, single-dose) injection were implemented to establish an AD rat model. Animals were exposed to 50 Hz and 400 µT ELF-MF for 60 continuous days. The spatial memory ability of the rat was then tested using the Morris water maze. Protein expression and interaction were detected by western blotting and co-immunoprecipitation for RKIP-mediated NF-κB pathway factors. The results showed that ELF-MF exposure partially improved the cognitive disorder, upregulated the levels of RKIP, TAK1, and the RKIP/TAK1 interaction, but downregulated p-IKK levels in AD rats. These results indicated that RKIP-mediated NF-κB pathway signaling plays an important role in the ELF-MF exposure-mediated improvements in the AD rat. Our study suggested that ELF-MF exposure might have a potential therapeutic value for AD. Further in depth studies are required in the future.


Subject(s)
Alzheimer Disease/therapy , Hippocampus/metabolism , Magnetic Field Therapy/methods , NF-kappa B/metabolism , Phosphatidylethanolamine Binding Protein/metabolism , Alzheimer Disease/chemically induced , Alzheimer Disease/pathology , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/toxicity , Animals , Behavior, Animal , Disease Models, Animal , Down-Regulation , Galactose/administration & dosage , Galactose/toxicity , Humans , Male , Maze Learning , Peptide Fragments/administration & dosage , Peptide Fragments/toxicity , Rats , Rats, Wistar , Signal Transduction , Treatment Outcome
16.
Hear Res ; 367: 88-96, 2018 09.
Article in English | MEDLINE | ID: mdl-30071403

ABSTRACT

Gene expression analysis is essential for understanding the rich repertoire of cellular functions. With the development of sensitive molecular tools such as single-cell RNA sequencing, extensive gene expression data can be obtained and analyzed from various tissues. Single-molecule fluorescence in situ hybridization (smFISH) has emerged as a powerful complementary tool for single-cell genomics studies because of its ability to map and quantify the spatial distributions of single mRNAs at the subcellular level in their native tissue. Here, we present a detailed method to study the copy numbers and spatial localizations of single mRNAs in the cochlea and inferior colliculus. First, we demonstrate that smFISH can be performed successfully in adult cochlear tissue after decalcification. Second, we show that the smFISH signals can be detected with high specificity. Third, we adapt an automated transcript analysis pipeline to quantify and identify single mRNAs in a cell-specific manner. Lastly, we show that our method can be used to study possible correlations between transcriptional and translational activities of single genes. Thus, we have developed a detailed smFISH protocol that can be used to study the expression of single mRNAs in specific cell types of the peripheral and central auditory systems.


Subject(s)
Auditory Pathways/metabolism , Cochlea/metabolism , In Situ Hybridization, Fluorescence , Inferior Colliculi/metabolism , Neurons/metabolism , RNA, Messenger/genetics , Single-Cell Analysis/methods , Animals , Auditory Pathways/cytology , Cochlea/cytology , Gene Expression Regulation , Immunohistochemistry , Inferior Colliculi/cytology , Mice , Microscopy, Confocal , Neurons/cytology , RNA, Messenger/metabolism , Transcription, Genetic
17.
J Neurosci Methods ; 291: 227-237, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28864083

ABSTRACT

BACKGROUND: Subjective tinnitus is a hearing disorder in which a person perceives sound when no external sound is present. It can be acute or chronic. Because our current understanding of its pathology is incomplete, no effective cures have yet been established. Mouse models are useful for studying the pathophysiology of tinnitus as well as for developing therapeutic treatments. NEW METHOD: We have developed a new method for determining acute and chronic tinnitus in mice, called sound-based avoidance detection (SBAD). The SBAD method utilizes one paradigm to detect tinnitus and another paradigm to monitor possible confounding factors, such as motor impairment, loss of motivation, and deficits in learning and memory. RESULTS: The SBAD method has succeeded in monitoring both acute and chronic tinnitus in mice. Its detection ability is further validated by functional studies demonstrating an abnormal increase in neuronal activity in the inferior colliculus of mice that had previously been identified as having tinnitus by the SBAD method. COMPARISON WITH EXISTING METHODS: The SBAD method provides a new means by which investigators can detect tinnitus in a single mouse accurately and with more control over potential confounding factors than existing methods. CONCLUSION: This work establishes a new behavioral method for detecting tinnitus in mice. The detection outcome is consistent with functional validation. One key advantage of mouse models is they provide researchers the opportunity to utilize an extensive array of genetic tools. This new method could lead to a deeper understanding of the molecular pathways underlying tinnitus pathology.


Subject(s)
Conditioning, Operant , Disease Models, Animal , Tinnitus/diagnosis , Acoustic Stimulation , Analysis of Variance , Animals , Avoidance Learning , Electroshock , Equipment Design , Evoked Potentials, Auditory, Brain Stem/physiology , Female , Inferior Colliculi/physiopathology , Male , Mice, Inbred C57BL , Motor Activity , Neurons/physiology , Otoacoustic Emissions, Spontaneous/physiology , Sodium Salicylate , Tinnitus/physiopathology , Tissue Culture Techniques , Voltage-Sensitive Dye Imaging
18.
Mol Neurobiol ; 53(4): 2100-11, 2016 May.
Article in English | MEDLINE | ID: mdl-25917873

ABSTRACT

Microwave radiation has been implicated in cognitive dysfunction and neuronal injury in animal models and in human investigations; however, the mechanism of these effects is unclear. In this study, single nucleotide polymorphism (SNP) sites in the rat GRIN2B promoter region were screened. The associations of these SNPs with microwave-induced rat brain dysfunction and with rat pheochromocytoma-12 (PC12) cell function were investigated. Wistar rats (n = 160) were exposed to microwave radiation (30 mW/cm(2) for 5 min/day, 5 days/week, over a period of 2 months). Screening of the GRIN2B promoter region revealed a stable C-to-T variant at nucleotide position -217 that was not induced by microwave exposure. The learning and memory ability, amino acid contents in the hippocampus and cerebrospinal fluid, and NR2B expression were then investigated in the different genotypes. Following microwave exposure, NR2B protein expression decreased, while the Glu contents in the hippocampus and CSF increased, and memory impairment was observed in the TT genotype but not the CC and CT genotypes. In PC12 cells, the effects of the T allele were more pronounced than those of the C allele on transcription factor binding ability, transcriptional activity, NR2B mRNA, and protein expression. These effects may be related to the detrimental role of the T allele and the protective role of the C allele in rat brain function and PC12 cells exposed to microwave radiation.


Subject(s)
Microwaves , Neurons/pathology , Promoter Regions, Genetic , Protein Subunits/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Animals , Base Sequence , Brain/pathology , Cell Proliferation , Gene Frequency/genetics , Genetic Variation , Genotype , Male , PC12 Cells , Protein Subunits/metabolism , Rats , Rats, Wistar
19.
PLoS One ; 10(5): e0126963, 2015.
Article in English | MEDLINE | ID: mdl-25978363

ABSTRACT

Although some epidemiological investigations showed a potential association between long-term exposure of extremely low frequency electromagnetic fields (ELF-EMF) and Alzheimer's disease (AD), no reasonable mechanism can explain this association, and the related animal experiments are rare. In this study, ELF-EMF exposure (50 Hz 400 µT 60 d) combined with D-galactose intraperitoneal (50 mg/kg, q.d., 42 d) and Aß25-35 hippocampal (5 µl/unilateral, bilateral, single-dose) injection was implemented to establish a complex rat model. Then the effects of ELF-EMF exposure on AD development was studied by using the Morris water maze, pathological analysis, and comparative proteomics. The results showed that ELF-EMF exposure delayed the weight gain of rats, and partially improved cognitive and clinicopathologic symptoms of AD rats. The differential proteomic analysis results suggest that synaptic transmission, oxidative stress, protein degradation, energy metabolism, Tau aggregation, and inflammation involved in the effects mentioned above. Therefore, our findings indicate that certain conditions of ELF-EMF exposure could delay the development of AD in rats.


Subject(s)
Alzheimer Disease/therapy , Electromagnetic Fields , Hippocampus/metabolism , Hippocampus/pathology , Memory Disorders/therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Hippocampus/radiation effects , Male , Maze Learning , Memory Disorders/metabolism , Memory Disorders/pathology , Rats , Rats, Wistar
20.
Mol Neurobiol ; 51(3): 1520-9, 2015.
Article in English | MEDLINE | ID: mdl-25108669

ABSTRACT

In the present study, we investigated whether Raf-1 kinase inhibitory protein (RKIP) is important for neural cell apoptosis induced by microwave exposure and explored the role of MEK/ERK/CREB pathway regulated by RKIP in the apoptosis. Differentiated PC12 cells were exposed to continuous microwave radiation at 2.856 GHz for 5 min with average power density of 30 mW/cm(2). RKIP sense and anti-sense recombinant plasmids were constructed and transfected into PC12 cells, respectively. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay were used to detect cell apoptosis. The results showed that RKIP was downregulated after microwave exposure while the MEK/ERK/CREB signaling pathway was activated excessively. Moreover, the ratio of Bcl-2/Bax decreased, activity of caspase-3 increased, and thus apoptotic DNA fragmentation increased. RKIP overexpression significantly inhibited the phosphorylation of MEK, ERK, and CREB, while RKIP downregulation had the reverse effect. Furthermore, U0126 was found to antagonize the changes caused by RKIP downregulation after exposure to radiation. In conclusion, RKIP plays an important role in the neural cell apoptosis induced by microwave radiation, and the regulation of cell apoptosis by RKIP is partly through the MEK/ERK/CREB pathway. This suggests that RKIP may act as a key regulator of neuronal damage caused by microwave radiation.


Subject(s)
Apoptosis/physiology , MAP Kinase Signaling System/physiology , Microwaves , Neurons/metabolism , Phosphatidylethanolamine Binding Protein/metabolism , Animals , Caspase 3/metabolism , Cell Line , Down-Regulation , Neurons/cytology , Proto-Oncogene Proteins c-raf/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...