Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 915: 170153, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38232821

ABSTRACT

Precipitation is a vital component of the global atmospheric and hydrological cycles and influencing the distribution of water resources. Even subtle changes in precipitation can significantly impact ecosystems, energy cycles, agricultural production, and food security. Therefore, understanding the changes in the precipitation structure under climate change is essential. The Qinghai-Tibet Plateau (QTP) is a region sensitive to global climate change and profoundly impacts the atmospheric water cycle in Asia and even globally, rendering it a hot topic in climate change research in recent years. Few studies have examined on the sub-daily scale precipitation structure over the QTP. In this paper, the characteristics of sub-daily precipitation on the QTP were systematically investigated from multiple perspectives, including the concentration index, skewness (the third standardized moment of a distribution), and kurtosis (the fourth standardized moment of a distribution). The results indicated that the frequency of moderate-intensity nighttime precipitation on the QTP generally increased, and the analysis of both the concentration index and kurtosis (skewness) suggested that extreme precipitation was more frequent in the southwestern foothills of the QTP. Furthermore, potential high-risk areas for natural disasters were identified on the QTP, and found that the southeastern part of the plateau constituted a potential hotspot area for flood disasters. Given the complexity of climate change, a comprehensive analysis of the spatiotemporal characteristics of diurnal and nighttime precipitation changes on the QTP could help reveal the regularity of precipitation changes. This has significant implications for forecasting, warning, disaster preparedness, and mitigation efforts on the QTP.

2.
BMC Infect Dis ; 20(1): 952, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33308159

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2, and outbreaks have occurred worldwide. Laboratory test results are an important basis for clinicians to determine patient condition and formulate treatment plans. METHODS: Fifty-two thousand six hundred forty-four laboratory test results with continuous values of adult inpatients who were diagnosed with COVID-19 and hospitalized in the Fifth Hospital in Wuhan between 16 January 2020 and 18 March 2020 were compiled. The first and last test results were compared between survivors and non-survivors with variance test or Welch test. Laboratory test variables with significant differences were then included in the temporal change analysis. RESULTS: Among 94 laboratory test variables in 82 survivors and 25 non-survivors with COVID-19, white blood cell count, neutrophil count/percentage, mean platelet volume, platelet distribution width, platelet-large cell percentage, hypersensitive C-reactive protein, procalcitonin, D-dimer, fibrin (ogen) degradation product, middle fluorescent reticulocyte percentage, immature reticulocyte fraction, lactate dehydrogenase were significantly increased (P < 0.05), and lymphocyte count/percentage, monocyte percentage, eosinophil percentage, prothrombin activity, low fluorescent reticulocyte percentage, plasma carbon dioxide, total calcium, prealbumin, total protein, albumin, albumin-globulin ratio, cholinesterase, total cholesterol, nonhigh-density/low-density/small-dense-low-density lipoprotein cholesterol were significantly decreased in non-survivors compared with survivors (P < 0.05), in both first and last tests. Prothrombin time, prothrombin international normalized ratio, nucleated red blood cell count/percentage, high fluorescent reticulocyte percentage, plasma uric acid, plasma urea nitrogen, cystatin C, sodium, phosphorus, magnesium, myoglobin, creatine kinase (isoenzymes), aspartate aminotransferase, alkaline phosphatase, glucose, triglyceride were significantly increased (P < 0.05), and eosinophil count, basophil percentage, platelet count, thrombocytocrit, antithrombin III, red blood cell count, haemoglobin, haematocrit, total carbon dioxide, acidity-basicity, actual bicarbonate radical, base excess in the extracellular fluid compartment, estimated glomerular filtration rate, high-density lipoprotein cholesterol, apolipoprotein A1/ B were significantly decreased in non-survivors compared with survivors (P < 0.05), only in the last tests. Temporal changes in 26 variables, such as lymphocyte count/percentage, neutrophil count/percentage, and platelet count, were obviously different between survivors and non-survivors. CONCLUSIONS: By the comprehensive usage of the laboratory markers with different temporal changes, patients with a high risk of COVID-19-associated death or progression from mild to severe disease might be identified, allowing for timely targeted treatment.


Subject(s)
Biomarkers/blood , COVID-19/blood , Survivors/statistics & numerical data , C-Reactive Protein/metabolism , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Inpatients/statistics & numerical data , Leukocyte Count , Lymphocyte Count , Male , Middle Aged , Neutrophils , Pandemics , Procalcitonin/blood , Retrospective Studies , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...