Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3659-3670, 2023 12.
Article in English | MEDLINE | ID: mdl-37289282

ABSTRACT

Vascular smooth muscle cells (VSMCs) are one of the sources of foam cells in atherosclerosis. However, the mechanism of VSMC-derived foam cell formation remain largely unknown. Bisdemethoxycurcumin (BDMC) is considered to possess diverse pharmacological properties, including anti-inflammation and anti-oxidation. However, the effects of BDMC on atherosclerosis remain unclear. Here, we established an in vitro foam cell model by culturing VSMCs with oxidized low-density lipoprotein (ox-LDL). The results show that BDMC reduced lipid droplets in ox-LDL-stimulated VSMCs. In addition, BDMC promotes autophagy by suppressing PDK1/Akt/mTOR signaling pathway. In vivo, BDMC alleviates inflammatory responses and lipid accumulation in in apoe-/- mice. Above all, the results from the present study suggested that BDMC may be used as a therapeutic agent for the prevention and treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Foam Cells , Mice , Animals , Foam Cells/metabolism , Muscle, Smooth, Vascular/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Autophagy , Myocytes, Smooth Muscle
2.
ACS Omega ; 7(2): 2444-2457, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35071932

ABSTRACT

Adding low dosage hydrate inhibitors to the hydrate systems makes the generated hydrate particles more uniformly dispersed in the liquid phase, which can significantly reduce the hydrate accumulation and blockage in oil and gas pipelines. The effect of surfactant hydrophile-lipophilic balance (HLB) values on hydrate flow characteristics was studied with a flow loop. The experimental results showed that there was a critical HLB value. When the HLB value was 4.3-9.2, it had an inhibitory effect on the hydrate induction time, and when the HLB value was greater than 10.2, it had a promoting effect. The hydrate volume fraction increased gradually with the increase in the HLB value, while the slurry apparent viscosity decreased with the increase in the HLB value. It was also found that different types of surfactants all showed the effects of anti-agglomerant and dispersion, which can obviously improve the flow of the hydrate slurry. Finally, the analyzed results showed that the hydrate slurry exhibited shear-thinning behaviors that can be identified as a pseudoplastic fluid based on the Herschel-Bulkley rheological model, and the functional relationship between the rheological index and the solid phase hydrate volume fraction was obtained using the fitting method. This study can provide a reference for the preparation of high-efficiency hydrate anti-agglomerants.

3.
RSC Adv ; 9(57): 33506-33518, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-35529165

ABSTRACT

The effects of a new promoter on the growth kinetics of methane hydrates were investigated using a visualized constant-pressure autoclave. The experimental results show that when the 1#, 2# and 3# unit promoter was compounded at a ratio of 2 : 1 : 1, the induction time was shortened greatly from 30 h to 0.64 h compared to the no promoter situation. Meanwhile, there was a larger amount of hydrate formation, and final hydrate volume fraction was 83.652%. Then, the hydrate formation characteristics under different additive dosages (500 ppm, 1000 ppm, 2000 ppm, 5000 ppm) and different subcooling degrees (2.5 °C, 3.5 °C, 4.5 °C, 5.5 °C, 6.5 °C) were investigated. The new promoter at these 4 concentrations could effectively shorten the induction time. And the higher the concentration, the smaller the induction time (0.22 h at 5000 ppm). It was also found that gas consumption and hydrate production rate increased first and then decreased with increasing promoter dosage. Finally, the optimal dosage was determined to be 2000 ppm, at which the induction time was shortened to 0.52 h, and the final hydrate volume fraction was 85.74%. Under the dosage of 2000 ppm and the subcooling degree of 6.5 °C, the shortest induction time (0.29 h) and the maximum formation rate (20.950 ml h-1) were obtained among all the experimental conditions in this work. Moreover, the greater the subcooling degree, the faster the hydrate nucleation, and the shorter the induction time. However, if the subcooling degree was too high, a hydrate layer formed rapidly at the gas-liquid interface in the autoclave, which would hinder hydrate formation and lead to the reduction of hydrate volume fraction to 60.153%. Therefore, a reasonable selection of the proportioning of promoters, dosage of the promoter and formation temperature could significantly promote the formation of hydrates. The findings in this work are meaningful to hydrate associated applications and can provide useful references for the selection of hydrate promoters.

4.
RSC Adv ; 9(56): 32873-32888, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-35529764

ABSTRACT

The formation and accumulation of hydrates in high pressure oil and gas pipelines bring great risks to field development and deep-water transportation. In this paper, a high pressure flow loop equipped with visual window was used to study the growth process of hydrates in a pipe flow system and slurry flow characteristics. Deionized water, industrial white oil and CO2 were selected as the experiment medium. A series of experiments with different initial pressures (2.5-3 MPa), liquid loads (7-9 L), flow rates (25-35 kg min-1) and water cuts (60-100%) were designed and carried out. Specifically, hydrate formation and slurry flow characteristics in two different systems, pure water and oil-water emulsion system, were compared. Both of the systems experienced an induction stage, slurry flow stage and followed by a plugging stage. Although hydrate growth gradually ceased in the slurry flow stage, plugging still occurred due to the continuous agglomeration of hydrates. Visual observation showed that there were obvious stratification of the oil-water emulsion systems at the later time of slurry flow stage, which directly resulted in pipe blockage. The hydrate induction time of the flow systems gradually decreased with the increasing initial pressure, initial flow rate and water content. And the induction time tended to decrease first and then slowly increase with the increasing liquid loading. For emulsion systems, the apparent viscosity and friction coefficient of the hydrate slurry increased with the increasing water content, indicating that there were higher plugging risks compared to the pure water systems. Moreover, the results of sensitivity analysis showed that the water content was the main factor affecting the hydrate induction time, followed by the influence of liquid carrying capacity and flow rate, and the initial pressure had the least influence on the induction time. Conclusions obtained in this paper can provide some reference not only for the prevention and management of hydrates in pipelines, but also for the application of CO2 hydrate as a refrigerant.

SELECTION OF CITATIONS
SEARCH DETAIL
...