Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Bioorg Chem ; 146: 107303, 2024 May.
Article in English | MEDLINE | ID: mdl-38521012

ABSTRACT

Arylpropionic ester scaffold was found as anti-inflammatory agents for the treatment and prevention of acute kidney injury (AKI). To further study the structure-activity relationship (SAR) of this scaffold, a series of acryl amides were designed, synthesized, and evaluated their anti-inflammation. Of these, compound 9d displayed the protective effect on renal tubular epithelial cells to significantly enhance the survival rate through inhibiting NF-κB phosphorylation and promoting cell proliferation in cisplatin-induced HK2 cells. Furthermore, 9d can interact with TLR4 to inhibit TLR4/STING/NF-κB pathway in the RAW264.7 cell. In vivo AKI mice model, 9d significantly downregulated the level of serum creatinine (Scr), blood urea nitrogen (BUN) and the inflammatory factors (IL-1ß, IL-6, TNF-α) to improve kidney function. Morphological and KIM-1 analyses showed that 9d alleviated cisplatin-induced tubular damage. In a word, 9d was a promising lead compound for preventive and therapeutic of AKI.


Subject(s)
Acute Kidney Injury , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Cisplatin/pharmacology , Toll-Like Receptor 4/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Tumor Necrosis Factor-alpha/pharmacology , Kidney/metabolism
2.
Nanomaterials (Basel) ; 14(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38334528

ABSTRACT

Micro- and nanoparticles of plastic waste are considered emerging pollutants with significant environmental and health impacts at high concentrations or prolonged exposure time. Here we report the synthesis and characterization of a known metal-organic framework (MOF) using terephthalic acid (TPA) recovered from the hydrolysis of polyethylene terephthalate (PET) bottle waste. This approach adds value to the existing large amounts of bottle waste in the environment. Fully characterized zinc-TPA MOF (MOF-5) was used for the extraction and removal of engineered polyvinyl chloride (PVC) and polymethylmethacrylate (PMMA) nanoparticles from water with a high efficiency of 97% and 95%, respectively. Kinetic and isotherm models for the adsorption of polymer nanoparticles (PNPs) on the MOF surface were investigated to understand the mechanism. The Qmax for PVC and PMMA NPs were recorded as 56.65 mg/g and 33.32 mg/g, respectively. MOF-5 was characterized before and after adsorption of PNPs on the surface of MOF-5 using a range of techniques. After adsorption, the MOF-5 was successfully regenerated and reused for the adsorption and removal of PNPs, showing consistent results for five adsorption cycles with a removal rate of 83-85%. MOF-5 was characterized before and after adsorption of PNPs on the surface using a range of techniques. The MOF-5 with PNPs on the surface was successfully regenerated and reused for the adsorption and removal of polymer nanoparticles, showing consistent results for five extraction cycles. As a proof of concept, MOF-5 was also used to remove plastic particles from commercially available body scrub gel solutions. Such methods and materials are needed to mitigate the health hazards caused by emerging micro- and nanoplastic pollutants in the environment.

3.
Aging (Albany NY) ; 16(1): 89-105, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38206646

ABSTRACT

Widely recognized as an essential epitranscriptomic modification, RNA N6-methyladenosine (m6A) is involved in both physiological and pathological processes. Here, we want to investigate m6A modification's potential roles in gastric cancer. Gastric cancer samples were selected from TCGA-STAD and GEO (GSE84426, GSE84433) datasets. Based on 18 regulators of m6A, m6A modification patterns were thoroughly evaluated in gastric cancer samples. Principal component analysis algorithms were used to construct the m6Ascore, using which, m6A modification features in tumor somatic mutations and immune checkpoint blockade therapy were analyzed. 34 gastric cancer samples were collected to verify the effectiveness of the m6Ascore. Here, we determined three different m6A modification patterns. m6Acluster-C modification pattern presented immune activation-associated enrichment pathways and have significant survival advantages. Then, in gastric cancer, m6Ascore could act as an independent prognostic biomarker. A significant survival benefit was exhibited in patients with high m6Ascore. Moreover, the modification signature of m6A uncovered in this study would help to predict immune checkpoint blockade therapy's responses. In conclusion, our discoveries all pointed to the fact that modification patterns of m6A were linked to the TME. Moreover, evaluation of individual tumor's m6A modification pattern will help to guide immunotherapy strategies that shows more therapeutic effects.


Subject(s)
Adenine/analogs & derivatives , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Immune Checkpoint Inhibitors , RNA , Methylation , Tumor Microenvironment
4.
Light Sci Appl ; 12(1): 218, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37673857

ABSTRACT

Polarimetric imaging has a wide range of applications for uncovering features invisible to human eyes and conventional imaging sensors. Chip-integrated, fast, cost-effective, and accurate full-Stokes polarimetric imaging sensors are highly desirable in many applications, which, however, remain elusive due to fundamental material limitations. Here we present a chip-integrated Metasurface-based Full-Stokes Polarimetric Imaging sensor (MetaPolarIm) realized by integrating an ultrathin (~600 nm) metasurface polarization filter array (MPFA) onto a visible imaging sensor with CMOS compatible fabrication processes. The MPFA is featured with broadband dielectric-metal hybrid chiral metasurfaces and double-layer nanograting polarizers. This chip-integrated polarimetric imaging sensor enables single-shot full-Stokes imaging (speed limited by the CMOS imager) with the most compact form factor, records high measurement accuracy, dual-color operation (green and red) and a field of view up to 40 degrees. MetaPolarIm holds great promise to enable transformative applications in autonomous vision, industry inspection, space exploration, medical imaging and diagnosis.

5.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37242424

ABSTRACT

Licorice, a natural medicine derived from the roots and rhizomes of Glycyrrhiza species, possesses a wide range of therapeutic applications, including antiviral properties. Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are the most important active ingredients in licorice. Glycyrrhetinic acid 3-O-mono-ß-d-glucuronide (GAMG) is the active metabolite of GL. GL and its metabolites have a wide range of antiviral activities against viruses, such as, the hepatitis virus, herpes virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and so on. Although their antiviral activity has been widely reported, the specific mechanism of action involving multiple links such as the virus itself, cells, and immunity are not clearly established. In this review, we will give an update on the role of GL and its metabolites as antiviral agents, and detail relevant evidence on the potential use and mechanisms of actions. Analyzing antivirals, their signaling, and the impacts of tissue and autoimmune protection may provide promising new therapeutic strategies.

6.
ACS Nano ; 17(11): 10431-10441, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37184138

ABSTRACT

Exploring emerging materials with enhanced optical nonlinearities at low power levels with ultrafast response and small footprints is of great interest for information processing, communication, sensing, and quantum systems. Recent progress on nonlinear metamaterials and metasurfaces suggests promising solutions to overcome the limitations of nonlinear materials in nature. Here we present a design concept for highly enhanced saturable absorption effect based on subwavelength-thick (<1/5λ0) hybrid graphene-plasmonic metasurface structures in infrared wavelengths. Our theoretical and experimental results demonstrated that, by exciting nonequilibrium carriers inside nanoscale hotspots, one could not only enhance the saturable absorption in graphene, but also reduce the saturation fluence by over 3 orders of magnitude (from ∼1 mJ/cm2 to ∼100 nJ/cm2). Our pump-probe measurement results suggested an ultrashort saturable absorption recovery time (<60 fs), which is ultimately determined by the relaxation dynamics of photoexcited carriers in graphene. We also observed pulse narrowing effects in our devices based on the autocorrelation measurement results. Such design concepts can be tailored via structure engineering to operate in broader wavelength ranges up to mid- and far- infrared spectral regions. These ultrafast low-saturation fluence saturable absorber designs can enable low-threshold, compact, self-starting mode-locked lasers, laser pulse shaping, and high-speed optical information processing.

7.
Med Rev (2021) ; 3(4): 277-304, 2023 Aug.
Article in English | MEDLINE | ID: mdl-38235400

ABSTRACT

The remarkable similarity between non-human primates (NHPs) and humans establishes them as essential models for understanding human biology and diseases, as well as for developing novel therapeutic strategies, thereby providing more comprehensive reference data for clinical treatment. Pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells provide unprecedented opportunities for cell therapies against intractable diseases and injuries. As continue to harness the potential of these biotechnological therapies, NHPs are increasingly being employed in preclinical trials, serving as a pivotal tool to evaluate the safety and efficacy of these interventions. Here, we review the recent advancements in the fundamental research of stem cells and the progress made in studies involving NHPs.

8.
Molecules ; 27(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35889533

ABSTRACT

To understand that 18ß-Glycyrrhetic acid 3-O-mono-ß-D-glucuronide (GAMG) showed better pharmacological activity and drug-like properties than 18ß-Glycyrrhizin (GL); a rapid and sensitive HPLC-MS/MS method was established for the simultaneous determination of GAMG and its metabolite 18ß-Glycyrrhetinic acid (GA) in rat plasma and tissues after oral administration of GAMG or GL. This analytical method was validated by linearity, LLOQ, specificity, recovery rate, matrix effect, etc. After oral administration, GAMG exhibited excellent Cmax (2377.57 ng/mL), Tmax (5 min) and AUC0-T (6625.54 mg/L*h), which was much higher than the Cmax (346.03 ng/mL), Tmax (2.00 h) and AUC0-T (459.32 mg/L*h) of GL. Moreover, GAMG had wider and higher tissue distribution in the kidney, spleen, live, lung, brain, etc. These results indicated that oral GAMG can be rapidly and efficiently absorbed and be widely distributed in tissues to exert stronger and multiple pharmacological activities. This provided a physiological basis for guiding the pharmacodynamic study and clinical applications of GAMG.


Subject(s)
Glycyrrhetinic Acid , Glycyrrhizic Acid , Animals , Glucuronidase/metabolism , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/pharmacology , Glycyrrhizic Acid/metabolism , Rats , Tandem Mass Spectrometry
9.
Light Sci Appl ; 11(1): 84, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35387968

ABSTRACT

Structural color printings have broad applications due to their advantages of long-term sustainability, eco-friendly manufacturing, and ultra-high resolution. However, most of them require costly and time-consuming fabrication processes from nanolithography to vacuum deposition and etching. Here, we demonstrate a new color printing technology based on polymer-assisted photochemical metal deposition (PPD), a room temperature, ambient, and additive manufacturing process without requiring heating, vacuum deposition or etching. The PPD-printed silver films comprise densely aggregated silver nanoparticles filled with a small amount (estimated <20% volume) of polymers, producing a smooth surface (roughness 2.5 nm) even better than vacuum-deposited silver films (roughness 2.8 nm) at ~4 nm thickness. Further, the printed composite films have a much larger effective refractive index n (~1.90) and a smaller extinction coefficient k (~0.92) than PVD ones in the visible wavelength range (400 to 800 nm), therefore modulating the surface reflection and the phase accumulation. The capability of PPD in printing both ultra-thin (~5 nm) composite films and highly reflective thicker film greatly benefit the design and construction of multilayered Fabry-Perot (FP) cavity structures to exhibit vivid and saturated colors. We demonstrated programmed printing of complex pictures of different color schemes at a high spatial resolution of ~6.5 µm by three-dimensionally modulating the top composite film geometries and dielectric spacer thicknesses (75 to 200 nm). Finally, PPD-based color picture printing is demonstrated on a wide range of substrates, including glass, PDMS, and plastic, proving its broad potential in future applications from security labeling to color displays.

10.
Biosens Bioelectron ; 202: 113971, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35051851

ABSTRACT

Successful control of emerging infectious diseases requires accelerated development of fast, affordable, and accessible assays for wide implementation at a high frequency. This paper presents a design for an in-solution assay pipeline, featuring nanobody-functionalized nanoparticles for rapid, electronic detection (Nano2RED) of Ebola and COVID-19 antigens. Synthetic nanobody binders with high affinity, specificity, and stability are selected from a combinatorial library and site-specifically conjugated to gold nanoparticles (AuNPs). Without requiring any fluorescent labelling, washing, or enzymatic amplification, these multivalent AuNP sensors reliably transduce antigen binding signals upon mixing into physical AuNP aggregation and sedimentation processes, displaying antigen-dependent optical extinction readily detectable by spectrometry or portable electronic circuitry. With Ebola virus secreted glycoprotein (sGP) and a SARS-CoV-2 spike protein receptor binding domain (RBD) as targets, Nano2RED showed a high sensitivity (the limit of detection of ∼10 pg /mL, or 0.13 pM for sGP and ∼40 pg/mL, or ∼1.3 pM for RBD in diluted human serum), a high specificity, a large dynamic range (∼7 logs),and fast readout within minutes. The rapid detection, low material cost (estimated <$0.01 per test), inexpensive and portable readout system (estimated <$5), and digital data output, make Nano2RED a particularly accessible assay in screening of patient samples towards successful control of infectious diseases.


Subject(s)
Antigens, Viral/analysis , Biosensing Techniques , COVID-19 , Metal Nanoparticles , Biosensing Techniques/methods , Ebolavirus , Glycoproteins , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Proteins
11.
Eur J Med Chem ; 223: 113735, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34371367

ABSTRACT

Cannabidiol (CBD) and rivastigmine have been launched as drugs for treating dementia and cholinesterases (ChEs) are ideal drug targets. This study focused on developing novel ChE inhibitors as drug leads against dementia through molecular modeling and fragment reassembly approaches. A potent carbamate fragment binding to active site gorge of BuChE was found via a docking-based structural splicing approach, thus, 17 novel compounds were designed by structural reassembly. Compound C16 was identified as a highly selective potent BuChE inhibitor (IC50 = 5.3 nM, SI > 4000), superior to CBD (IC50 = 0.67 µM). C16 possessed BBB penetrating ability, benign safety, neuroprotection, antioxidant and pseudo-irreversible BuChE inhibition (Kd = 13 nM, k2 = 0.26 min-1), showing good drug-like properties. In vivo studies confirmed that C16 significantly ameliorated the scopolamine-induced cognition impairment, almost entirely recovered the Aß1-42 (icv)-impaired cognitive function to the normal level, showed better behavioral performance than donepezil and good anti-amyloidogenic effect. Hence, the potential BuChE inhibitor C16 can be developed as a promising disease-modifying treatment of AD.


Subject(s)
Butyrylcholinesterase/chemistry , Cannabidiol/chemistry , Carbamates/chemistry , Cholinesterase Inhibitors/chemistry , Neuroprotective Agents/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Animals , Binding Sites , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Butyrylcholinesterase/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/therapeutic use , Drug Design , Humans , Kinetics , Maze Learning/drug effects , Mice , Mice, Inbred ICR , Molecular Docking Simulation , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Structure-Activity Relationship
12.
Bioorg Chem ; 110: 104755, 2021 05.
Article in English | MEDLINE | ID: mdl-33652342

ABSTRACT

To develop new anti-inflammatory drugs for the prevention and treatment of acute kidney injury, a series of novel glycyrrhetic ureas were designed, synthesized and evaluated for anti-inflammatory activity using RAW264.7 cells. Compounds 5r-5u (2.04, 2.50, 3.25 and 2.48 µM, respectively) with acidic or neutral amino acid showed potent anti-inflammatory activity (IC50 = 2-3 µM for NO inhibition), amongst them, compound 5r also inhibited tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a dose-dependent manner. In cisplatin-induced AKI mice model, compound 5r significantly reduced the level of pro-inflammatory factors, ameliorated the pathological damage of kidney tissue, and maintained the normal metabolic capacity.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/chemical synthesis , Urea/analogs & derivatives , Urea/chemical synthesis , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Cisplatin/toxicity , Drug Design , Glycyrrhetinic Acid/pharmacology , Inflammation/drug therapy , Mice , RAW 264.7 Cells , Urea/pharmacology
13.
Biosens Bioelectron ; 174: 112829, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33308962

ABSTRACT

Solid-state nanopores have broad applications from single-molecule biosensing to diagnostics and sequencing. The high capacitive noise from conventionally used conductive silicon substrates, however, has seriously limited both their sensing accuracy and recording speed. A new approach is proposed here for forming nanopore membranes on insulating sapphire wafers to promote low-noise nanopore sensing. Anisotropic wet etching of sapphire through micro-patterned triangular masks is used to demonstrate the feasibility of scalable formation of small (<25 µm) membranes with a size deviation of less than 7 µm over two 2-inch wafers. For validation, a sapphire-supported (SaS) nanopore chip with a 100 times larger membrane area than conventional nanopores was tested, which showed 130 times smaller capacitance (10 pF) and 2.6 times smaller root-mean-square (RMS) noise current (18-21 pA over 100 kHz bandwidth, with 50-150 mV bias) when compared to a silicon-supported (SiS) nanopore (~1.3 nF, and 46-51 pA RMS noise). Tested with 1k base-pair double-stranded DNA, the SaS nanopore enabled sensing at microsecond speed with a signal-to-noise ratio of 21, compared to 11 from a SiS nanopore. This SaS nanopore presents a manufacturable nanoelectronic platform feasible for high-speed and low-noise sensing of a variety of biomolecules.


Subject(s)
Biosensing Techniques , Nanopores , Aluminum Oxide , DNA , Nanotechnology
14.
Bioorg Chem ; 105: 104455, 2020 12.
Article in English | MEDLINE | ID: mdl-33197847

ABSTRACT

Acute kidney injury (AKI) is associated with a strong inflammatory response, and inhibiting the response effectively prevents or ameliorates AKI. A series of novel arylpropionic esters were designed, synthesized and evaluated their biological activity in LPS-stimulated RAW264.7 cells. Novel arylpropionic esters bearing multi-functional groups showed significant anti-inflammatory activity, in which, compound 13b exhibited the most potent activity through dose-dependent inhibiting the production of nitric oxide (NO, IC50 = 3.52 µM), TNF-α and IL-6 (84.1% and 33.6%, respectively), as well as suppressing the expression of iNOS, COX-2 and TLR4 proteins. In C57BL/6 mice with cisplatin-induced AKI, compound 13b improved kidney function, inhibited inflammatory development, and reduced pathological damage of kidney tissues. In brief, this arylpropionic ester scaffold may be developed as anti-inflammatory agents.


Subject(s)
Acute Kidney Injury/drug therapy , Anti-Inflammatory Agents/chemical synthesis , Esters/chemistry , Propionates/chemical synthesis , Animals , Anti-Inflammatory Agents/pharmacology , Cisplatin/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Humans , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Propionates/pharmacology , Quinolines/chemistry , RAW 264.7 Cells , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...