Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(6): 9397-9404, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571175

ABSTRACT

This research proposed a novel pulse-shaping design for directly shaping distorted pulses after the amplification. Based on the principle of the design we made a pulse shaper. With this pulse shaper, we successfully manipulate the pulse's leading edge and width to achieve an 'M'-shaped waveform in an amplification system. Comparative experiments were conducted within this system to compare the output with and without the integration of the pulse shaper. The results show a significant suppression of the nonlinear effect upon adding the pulse shaper. This flexible and effective pulse shaper can be easily integrated into a high-power all-fiber system, supplying the capability to realize the desired output waveform and enhance the spectral quality.

2.
Opt Express ; 31(10): 16845-16856, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157754

ABSTRACT

This paper presents a comprehensive experimental study of multi-stable-state output characteristics in an all-fiber laser with an acoustic-optical modulator (AOM) as the Q-switcher. For the first time, in this structure, the partitioning of the pulsed output characteristics is explored, dividing the operating status of the laser system into four zones. The output characteristics, the application prospects, and the parameter setting rules for working in stable zones are presented. In the second stable zone, a peak power of 4.68 kW with 24 ns was obtained at 10 kHz. This is the narrowest pulse duration achieved with an AOM actively Q-switched all-fiber linear structure. The pulse narrowing is attributed to the rapid release of signal power and pulse tail truncated by AOM shutdown.

3.
Opt Express ; 31(26): 43125-43134, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38178414

ABSTRACT

We demonstrate a single-stage all-fiber nanosecond amplifier with a total average power of greater than 1.4 kW by employing what we believe to be a novel multi-cavity passively Q-switched fiber laser as the seed laser. The multi-cavity seed laser adopts a piece of Yb-doped fiber (YDF) as saturable absorber (SA), and it includes two external cavities resonating at 1030 nm and an internal cavity working at 1064 nm, respectively. Using such a scheme, a stable dual-channel laser output with a total average power of >35 W, a pulse width of 45 ns, and an optical conversion efficiency of 72% operating at 1064 nm is achieved. By power scaling the multi-cavity seed laser, a dual-channel single-stage nanosecond amplifier is obtained with a single-port average power of exceeding 700 W and a pulse energy of about 7.3 mJ. To the best of our knowledge, this work is the highest average power and optical conversion efficiency for passively Q-switched all-fiber laser employing SA fiber, and the highest average power for a single-stage all-fiber nanosecond amplifier.

SELECTION OF CITATIONS
SEARCH DETAIL
...