Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Chem ; 11(6): 567-72, 2015.
Article in English | MEDLINE | ID: mdl-25665651

ABSTRACT

37 acetylenic chalcones were designed, synthesized by the Pd/Cu catalyzed Sonogashira coupling reaction, and evaluated for anti-inflammatory activities. A majority of these compounds showed remarkable inhibitions of the expression of inflammatory cytokines in LPS-stimulated macrophages. Six of them demonstrated the dose-dependent inhibition of inflammatory cytokines, and 4f is the most potent antiinflammatory compound. Our results suggest that these active acetylenic chalcones could be further developed as promising candidates for the treatment of inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chalcones/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chalcones/chemical synthesis , Chalcones/chemistry , Cytokines/biosynthesis , Cytokines/metabolism , Dose-Response Relationship, Drug , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Structure , Structure-Activity Relationship
2.
Int J Oncol ; 40(6): 1849-57, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22378302

ABSTRACT

Pancreatic cancer is a highly aggressive malignant disease. Gemcitabine is currently the standard first-line chemotherapeutic agent for pancreatic cancer. As members of apoptosis inhibitors, Survivin and XIAP play an important role in chemotherapy resistance in pancreatic cancer. Emodin has therapeutic potential against cancers. This study was designed to investigate whether combination therapy with gemcitabine and emodin enhanced antitumor efficacy in pancreatic cancer. The application of the combination therapy triggered significantly higher frequency of pancreatic cancer cell apoptosis. Our research demonstrated that the combination of emodin and gemcitabine resulted in significantly reduced tumor volumes compared to gemcitabine or emodin treatment alone. Immunohistochemistry and western immunoblot analyses showed that Survivin and XIAP expression were downregulated in emodin and the combination groups compared to the other two groups. Reverse transcriptase polymerase chain reaction analyses showed that Survivin and XIAP mRNA expression in emodin and the combination groups were downregulated significantly compared to the other two groups. Furthermore, the expression of the nuclear transcription factor κB (NF-κB) protein and NF-κB mRNA were downregulated in the emodin and the combination groups. DNA-binding activity of NF-κB was inhibited in emodin and combination groups compared to the other groups. This study suggests that emodin potentiates the antitumor effects of gemcitabine in PANC-1 cell xenografts via promotion of apoptosis and IAP suppression.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis/drug effects , Pancreatic Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Caspases/metabolism , Cell Line, Tumor , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Down-Regulation , Drug Synergism , Emodin/administration & dosage , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Ki-67 Antigen/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Pancreatic Neoplasms/pathology , Survivin , Tumor Burden/drug effects , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , Xenograft Model Antitumor Assays , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...