Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 30(6): 1756-1767, 2019 06.
Article in English | MEDLINE | ID: mdl-30371394

ABSTRACT

In this paper, an adaptive neural control design method is presented for a class of multiple-input-multiple-output (MIMO) pure-feedback nonlinear systems with periodically time-varying disturbances appearing nonlinearly in unknown nonaffine functions. The nonaffine functions do not need to be differentiable, and the bounded condition of unknown nonaffine functions is relaxed such that only a more general semibounded assumption is required as the controllability condition of the considered MIMO pure-feedback system. To facilitate the control design, the gain functions are designed to be continuous and positive with the bounds being unknown functions. Furthermore, for handling with the difficulty caused by these unknown bounds, several appropriate compact sets are defined to obtain the bounds of gain functions. By utilizing Lyapunov analysis, all the variables of the resulting closed-loop system are proven to be semiglobally uniformly ultimately bounded, and the tracking error can converge to an arbitrarily small neighborhood around zero by choosing design parameters appropriately. The effectiveness of the proposed control algorithm is demonstrated by two simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...