Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 361: 142475, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810809

ABSTRACT

The carbon‒oxygen balance has always been problematic in constructed wetlands (CWs), putting pressure on stable and efficient nitrogen removal. In this study, a novel partial siphon operational strategy was developed to further optimize the carbon and oxygen distributions of a partially saturated vertical flow CW (SVFCW) to enhance nitrogen removal. The removal performances of the partial siphon SVFCW (S-SVFCW) were monitored and compared with those of the SVFCWs at different partial siphon depths (15 cm, 25 cm and 35 cm) in both the warm and cold seasons. The results showed that the partial siphon operating strategy significantly facilitated the removal of ammonia and total nitrogen (TN) in both the warm and cold seasons. When the partial siphon depth was 25 cm, the S-SVFCWs had the highest TN removal efficiency in both the warm (71%) and cold (56%) seasons, with an average improvement of 46% and 52%, respectively, compared with those of the SVFCWs. The oxidation‒reduction potential (ORP) results indicated that richer OPR environments and longer hydraulic detention times were obtained in the S-SVFCWs, which enriched the denitrification bacteria. Microbial analysis revealed greater nitrification and denitrification potentials in the unsaturated zone with enriched functional genes (e.g., amo_AOA, amo_AOB, nxrA and nirK), which are related to nitrification and denitrification processes. Moreover, the strengthening mechanism was the intensified oxygen supply and carbon utilization efficiency based on the cyclic nitrogen profile analysis. This study provides a novel partial siphon operational strategy for enhancing the nitrogen removal capacity of SVFCWs without additional energy or land requirements.


Subject(s)
Denitrification , Nitrogen , Waste Disposal, Fluid , Wetlands , Waste Disposal, Fluid/methods , Ammonia/chemistry , Nitrification , Oxygen , Carbon/chemistry , Water Pollutants, Chemical , Bacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...